![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Environmental engineering & technology > Sanitary & municipal engineering > Waste treatment & disposal > General
Proceedings of the International Workshop, Thermal Solid Waste Utilization in Regular and Industrial Facilities, held in Kazimierz Dolny, Poland, November 28-30, 1999. In recent years, industrial and urban growth has resulted in growing volumes of nondegradable wastes, and this volume focuses on the technologies related to recycling and material reuse which are now being favoured over land disposal. There is an overview on waste utilisation in industrial facilities, particularly cement kilns, from an ecological as well as technological aspect, and some innovative solutions of pyrolitic and plasma reactors, used for hazardous wastes combustion.
On its next capital construction project, would your water or wastewater utility like to achieve Seven percent lower cost Thirteen percent faster construction Thirty-three percent faster overall schedule Fifty percent less schedule growth? These are some of the attractive benefits many water and wastewater utilities enjoy through the use of design-build construction over traditional design-bid-build construction. This book provides a basic template of how to plan, procure, and execute a design-build project. Written for water and wastewater utility management, engineers, planners, city officials, utility policymakers, regulators, and design-build contractors, the book covers all topics: History of design-build Types of projects well suited for design-build Steps to prepare for a design-build project Procuring a design-builder Executing design-build projects and performing acceptance tests Bonding, insurance, and dispute resolution Permitting and regulatory agency approvals State laws regarding design-build Design-Build for Water and Wastewater Projects was developed in collaboration with the Water Design-Build Council.
Data, Statistics, and Useful Numbers for Environmental Sustainability: Bringing the Numbers to Life is an accessible reference for researchers working in environmental and sustainability fields who need to communicate the latest data and statistics to reinforce their own research or message. The book compiles the most-needed numbers into one resource and covers a variety of relevant topics, including materials, energy, environment, city planning, electronics, and waste. This handbook is clearly indexed and full of comprehensive tables, making it easy to find answers. Researchers in environmental and sustainability-related fields will find it an invaluable resource.
Water quality modeling is a powerful tool to help in understanding the processes and factors that influence water quality in potable water distribution systems. This book will help you set up a realistic mathematical simulation of your distribution system and your water quality to let you determine the fate of contaminants as they travel through the distribution system. You'll see how to model a wide range of operational and design variables. Experiment with various scenarios to model and monitor TTHMs, disinfectant decay, chemical reactions, supply-and-demand over time, hydraulics, tank mixing, blended waters, and many other parameters. Whether you are new to water quality modeling or a long-time practitioner, you'll find a vast wealth of knowledge from an esteemed expert in the field and pioneering developer of EPANET, author Robert M. Clark.
Resource Recovery in Industrial Waste Waters provides a holistic approach for discovering and harnessing valuable resources from industrial wastewaters, the cutting-edge technologies required, and a discussion on the new findings. In three volumes, the books stress the importance of contaminated waters' remediation, including surface waters, municipal or industrial wastewaters and treating these waters as a new source of nutrients, minerals and energy. It introduces polluted waters as new and sustainable sources, rather than seeing wastewaters as only a source of hazardous organic and inorganic matters. Sections discuss wastewater treatment and recovery and contribute to generate a sustainable approach of wastewater by providing the main advantages and disadvantages of both wastewater/polluted water treatment and recovery.
Resource Recovery in Drinking Water Treatment concentrates on techniques and methods for water purification. The book develops a new approach—resource recovery—toward drinking water, including the role of methods (adsorption, membrane, ion – exchange, biosorption, coagulation, etc.) and nanocomposites (such as biochar, sludge-based composites, chitosan, polymer, magnetic particles, etc.) in water resource recovery. It provides an in-depth overview on emerging water treatment techniques and the resource recovery of materials during the treatment process. Finally, the book aims to introduce polluted waters as new and sustainable sources rather than seeing wastewaters only a source of hazardous organic and inorganic matters. This book is part of a three-volume set that stresses the importance of contaminated water remediation, including surface waters, municipal or industrial wastewaters, and waters as a new source of nutrients, minerals and energy.
Resource Recovery in Municipal Waste Waters provides various municipal wastewater remediation methods and techniques to recover materials from such wastewaters. Sections cover the basic principles of resource recovery, along with the recovery of methane, phosphorous, electricity and metals. The volume covers comprehensive cutting-edge techniques for resource recovery and municipal wastewater treatment and reports on new findings in these areas. It also introduces polluted waters as new and sustainable sources rather than seeing wastewaters as a source of hazardous organic and inorganic matters. The main advantages and disadvantages of both wastewater/polluted water treatment and recovery are also discussed. This three-volume set stresses the importance of contaminated waters remediation, including surface waters, municipal or industrial wastewaters, treating these waters as a new source of nutrients, minerals and energy.
This Volume covers protocols for various applications in hydrocarbon microbiology, including those of interest for industrial processes, biocatalysis, lipid and biofuel production, bioproducts, or the human microbiome. It presents detailed protocols for the functional screening of enzymes acting on greasy molecules (i.e. lipases, esterases), including assays for enantioselective biocatalysts, as well as approaches for protein display technologies. Protocols for improving fuel quality and production of biofuel and lipids in different hosts (bacteria, algae, yeast) are also provided. The production of biogas from organic waste and its fermentation into value-added products such as polyhydroxyalkanoates is covered, as well as an in-vitro model of the gut microbiome for short-chain fatty acid metabolism and microbial diversity analyses. The applications presented are examples of the many potential applications in hydrocarbon and lipid microbiology, and many (i.e. protein-display technologies) will also be of interest in other research fields. Hydrocarbon and Lipid Microbiology Protocols There are tens of thousands of structurally different hydrocarbons, hydrocarbon derivatives and lipids, and a wide array of these molecules are required for cells to function. The global hydrocarbon cycle, which is largely driven by microorganisms, has a major impact on our environment and climate. Microbes are responsible for cleaning up the environmental pollution caused by the exploitation of hydrocarbon reservoirs and will also be pivotal in reducing our reliance on fossil fuels by providing biofuels, plastics and industrial chemicals. Gaining an understanding of the relevant functions of the wide range of microbes that produce, consume and modify hydrocarbons and related compounds will be key to responding to these challenges. This comprehensive collection of current and emerging protocols will facilitate acquisition of this understanding and exploitation of useful activities of such microbes.
Presenting effective, practicable strategies modeled from ultramodern technologies and framed by the critical insights of 78 field experts, this vastly expanded Second Edition offers 32 chapters of industry- and waste-specific analyses and treatment methods for industrial and hazardous waste materials-from explosive wastes to landfill leachate to wastes produced by the pharmaceutical and food industries. Key additional chapters cover means of monitoring waste on site, pollution prevention, and site remediation. Including a timely evaluation of the role of biotechnology in contemporary industrial waste management, the Handbook reveals sound approaches and sophisticated technologies for treating -textile, rubber, and timber wastes -dairy, meat, and seafood industry wastes -bakery and soft drink wastes -palm and olive oil wastes -pesticide and livestock wastes -pulp and paper wastes -phosphate wastes -detergent wastes -photographic wastes -refinery and metal plating wastes -power industry wastes This state-of-the-art Second Edition is required reading for pollution control, environmental, chemical, civil, sanitary, and industrial engineers; environmental scientists; regulatory health officials; and upper-level undergraduate and graduate students in these disciplines.
The protection of groundwater and surface water from contamination
by the escape of contaminant from waste disposal is now an
important consideration in many countries of the world.
Rapid developments in the field precipitated by the increased demand for clean burner systems have rendered much of the published literature outdated. With the Industrial Burners Handbook, best-selling author, editor, and combustion expert Charles Baukal, Jr. fills this gap. This handbook is a comprehensive reference dedicated to the design and applications of industrial burners. In addition to a solid introduction to combustion and burner fundamentals, an outstanding panel of contributing authors address all major burner types and explore a range of topics never before adequately covered in a handbook, including noise, burner controls, and physical modeling.
This book provides a critical, carefully researched, up-to-date summary of membranes for membrane bioreactors. It presents a comprehensive and self-contained outline of the fundamentals of membrane bioreactors, especially their relevance as an advanced water treatment technology. This outline helps to bring the technology to the readers' attention, and positions the critical topic of membrane fouling as one of the key impediments to its more widescale adoption. The target readership includes researchers and industrial practitioners with an interest in membrane bioreactors.
The books currently available on this subject contain some elements of physical-chemical treatment of water and wastewater but fall short of giving comprehensive and authoritative coverage. They contain some equations that are not substantiated, offering empirical data based on assumptions that are therefore difficult to comprehend. This text brings together the information previously scattered in several books and adds the knowledge from the author's lectures on wastewater engineering.
The proceedings in this work present 60 papers on mine and mill tailings and mine waste, as well as current and future issues facing the mining and environmental communities. This includes matters dealing with technical capabilities and developments, regulations, and environmental concerns.
Municipal solid waste (MSW) disposal is an ever-increasing problem in many parts of the world, especially in developing countries. To date, landfilling is still the preferred option for the disposal and management of MSW due to its low-cost operation. While this solution is advantageous from a cost perspective, it introduces a high level of potential pollutants which can be detrimental to the local environment. Control and Treatment of Landfill Leachate for Sanitary Waste Disposal presents research-based insights and solutions for the proper management and treatment of landfill leachate. Highlighting relevant topics on emerging technologies and treatment innovations for minimizing the environmental hazards of waste disposal, this innovative publication contributes to filling in many of the gaps that exist in the current literature available on leachate treatment. Waste authorities, solid waste management companies, landfill operators, legislators, environmentalists, graduate students, and researchers will find this publication beneficial to their professional and academic interests in the area of waste treatment and management.
This book presents an overview of the characterization of electronic waste. In addition, processing techniques for the recovery of metals, polymers and ceramics are described. This book serves as a source of information and as an educational technical reference for practicing scientists and engineers, as well as for students.
This book addresses a complex issue - water sustainability - that requires a combined approach to manage both water and energy. It highlights several technologies that have been introduced to study the water-energy linkage. It also discusses the need to develop effective laws for water management. In turn, the book assesses hybrid biological systems and demonstrates why they are better for the wastewater treatment process. Lastly, it reviews wastewater quality requirements, which have been the primary driver of industrial wastewater treatment programs in India. Gathering selected, high-quality research papers presented at the IconSWM 2018 conference, the book offers a valuable asset, not only for researchers and academics, but also for industrial practitioners and policymakers.
This book is the third volume in a three-volume set on Solid Waste Engineering and Management. It focuses on tourism industry waste, rubber tire recycling, electrical and electronic wastes, health-care waste, landfill leachate, bioreactor landfill, energy recovery, innovative composting, biodrying, and health and safety considerations pertaining to solid waste management.. The volumes comprehensively discuss various contemporary issues associated with solid waste pollution management, impacts on theenvironmental and vulnerable human populations, and solutions to these problems.
FROM THE PREFACE
Landfilling of waste is an international issues of environmental and political concern and should be viewed as part of an integrated waste management system. Landfilling of Waste: Biogas is the third in a series of reference books which provide a comprehensive overview of the state of the art and identify new directions in landfill technology and research. The editors have collected contributions from authors of international repute in landfill. The book begins with a description of gas generation and composition, covers the environmental aspects, discusses gas production, extraction and transportation, treatment and utilization, emissions and safety, and ends with a selection of case studies.
This Volume presents applications of hydrocarbon microbiology in the context of environmental pollutant degradation, covering pollutants such as petroleum and related wastes (i.e. oil sludge), biofuels, lipid-rich wastes, chlorinated solvents and BTEX, in several environments (marine, soil, groundwater). The approaches presented range from laboratory experiments and treatment in reactors to field applications. Two chapters highlight innovative approaches to address relevant questions in pollutant degradation, such as low environmental concentrations of pollutants, and the biodegradation of complex pollutant mixtures using biofilms. Rather than presenting the applications in the form of protocols, some of the chapters in this Volume include detailed practical information on the opportunities offered by and limitations of the different approaches, providing valuable information for researchers planning to perform bioremediation experiments. Hydrocarbon and Lipid Microbiology Protocols There are tens of thousands of structurally different hydrocarbons, hydrocarbon derivatives and lipids, and a wide array of these molecules are required for cells to function. The global hydrocarbon cycle, which is largely driven by microorganisms, has a major impact on our environment and climate. Microbes are responsible for cleaning up the environmental pollution caused by the exploitation of hydrocarbon reservoirs and will also be pivotal in reducing our reliance on fossil fuels by providing biofuels, plastics and industrial chemicals. Gaining an understanding of the relevant functions of the wide range of microbes that produce, consume and modify hydrocarbons and related compounds will be key to responding to these challenges. This comprehensive collection of current and emerging protocols will facilitate acquisition of this understanding and exploitation of useful activities of such microbes. |
![]() ![]() You may like...
Music for Children with Hearing Loss - A…
Lyn E. Schraer-Joiner
Hardcover
R4,084
Discovery Miles 40 840
Building a Brand Image Through…
Arshi Naim, Sandeep Kumar Kautish
Hardcover
R6,730
Discovery Miles 67 300
Promising Practices in 21st Century…
Michele Kaschub, Janice Smith
Hardcover
R4,083
Discovery Miles 40 830
Multimedia Semantics - The Role of…
Michael Granitzer, Mathias Lux, …
Hardcover
R3,030
Discovery Miles 30 300
Exploring Future Opportunities of…
Madhulika Bhatia, Tanupriya Choudhury, …
Hardcover
R7,249
Discovery Miles 72 490
|