![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Environmental engineering & technology > Sanitary & municipal engineering > Waste treatment & disposal > General
Biotechnology for Waste Management and Site Restoration covers: waste management - solid, gaseous, liquid; site restoration - radioactivity, organics, toxic metals; educational, economic, social and business aspects; and international collaboration. International collaboration is growing apace and many concrete projects have been started. The body of knowledge is growing. Over the long term, it is envisaged that this international collaboration will result in a long-term scientific and technological strategy, new technologies and alternative solutions, and practical implementations of biotechnology for the nuclear and industrial sectors of the economy.
This book presents a Two-Stage Anaerobic Digestion (TSAD) technique for producing hydrogen and methane, following a step-by-step approach in order to guide readers through the experimental verification of the related hypothesis. In the first stage of AD, the reaction conditions are optimized to obtain the maximum amount of hydrogen, while in the second the liquid residue from the first phase is used as a substrate to produce fuel-methane. AD has traditionally been used to reduce the organic content of waste; this results in a biogas that is primarily constituted of CH4 and CO2. Over the last few decades, the conversion of organic matter into hydrogen by means of AD and selecting Hydrogen Producing Bacteria (HPB) has matured into a viable and sustainable technology among the pallet of H2 generation technologies. The combined bio-production of hydrogen and methane from Organic Waste Materials (OWM) is considered to be an ideal way of utilizing waste, and can increase energy efficiency (the substrate Heat Value converted into H2 and CH4 fuel) to roughly 80%, since the energy efficiency of H2-production alone (15%) is not energetically competitive. The two gas streams can be used either separately or in combination (Hytane (R)), be supplied as civilian gas or used for transportation purposes. All the aspects of this sustainable technology are taken into account, from the basic biochemical implications to engineering aspects, establishing the design criteria and the scale-up procedures for full-scale application. The sustainability of the TSAD method is assessed by applying EROI (Energy Return On Investment) and EPT (Energy Payback Time) criteria, and both the general approach and application to the field of Anaerobic Digestion are illustrated.
Waste Management and Resource Recycling in the Developing World provides a unique perspective on the state of waste management and resource recycling in the developing world, offering practical solutions based on innovative tools and technologies, along with examples and case studies. The book is organized by waste type, including electronic, industrial and biomedical/hazardous, with each section covering advanced techniques, such as remote sensing and GIS, as well as socioeconomic factors, transnational transport and policy implications. Waste managers, environmental scientists, sustainability practitioners, and engineers will find this a valuable resource for addressing the challenges of waste management in the developing world. There is high potential for waste management to produce energy and value-added products. Sustainable waste management based on a circular economy not only improves sanitation, it also provides economic and environmental benefits. In addition to waste minimization, waste-to-economy and waste-to-energy have become integral parts of waste management practices. A proper waste management strategy not only leads to reduction in environmental pollution but also moves toward generating sufficient energy for improving environmental sustainability in coming decades.
Proceedings of the International Workshop, Thermal Solid Waste Utilization in Regular and Industrial Facilities, held in Kazimierz Dolny, Poland, November 28-30, 1999. In recent years, industrial and urban growth has resulted in growing volumes of nondegradable wastes, and this volume focuses on the technologies related to recycling and material reuse which are now being favoured over land disposal. There is an overview on waste utilisation in industrial facilities, particularly cement kilns, from an ecological as well as technological aspect, and some innovative solutions of pyrolitic and plasma reactors, used for hazardous wastes combustion.
On its next capital construction project, would your water or wastewater utility like to achieve Seven percent lower cost Thirteen percent faster construction Thirty-three percent faster overall schedule Fifty percent less schedule growth? These are some of the attractive benefits many water and wastewater utilities enjoy through the use of design-build construction over traditional design-bid-build construction. This book provides a basic template of how to plan, procure, and execute a design-build project. Written for water and wastewater utility management, engineers, planners, city officials, utility policymakers, regulators, and design-build contractors, the book covers all topics: History of design-build Types of projects well suited for design-build Steps to prepare for a design-build project Procuring a design-builder Executing design-build projects and performing acceptance tests Bonding, insurance, and dispute resolution Permitting and regulatory agency approvals State laws regarding design-build Design-Build for Water and Wastewater Projects was developed in collaboration with the Water Design-Build Council.
Water quality modeling is a powerful tool to help in understanding the processes and factors that influence water quality in potable water distribution systems. This book will help you set up a realistic mathematical simulation of your distribution system and your water quality to let you determine the fate of contaminants as they travel through the distribution system. You'll see how to model a wide range of operational and design variables. Experiment with various scenarios to model and monitor TTHMs, disinfectant decay, chemical reactions, supply-and-demand over time, hydraulics, tank mixing, blended waters, and many other parameters. Whether you are new to water quality modeling or a long-time practitioner, you'll find a vast wealth of knowledge from an esteemed expert in the field and pioneering developer of EPANET, author Robert M. Clark.
Data, Statistics, and Useful Numbers for Environmental Sustainability: Bringing the Numbers to Life is an accessible reference for researchers working in environmental and sustainability fields who need to communicate the latest data and statistics to reinforce their own research or message. The book compiles the most-needed numbers into one resource and covers a variety of relevant topics, including materials, energy, environment, city planning, electronics, and waste. This handbook is clearly indexed and full of comprehensive tables, making it easy to find answers. Researchers in environmental and sustainability-related fields will find it an invaluable resource.
Presenting effective, practicable strategies modeled from ultramodern technologies and framed by the critical insights of 78 field experts, this vastly expanded Second Edition offers 32 chapters of industry- and waste-specific analyses and treatment methods for industrial and hazardous waste materials-from explosive wastes to landfill leachate to wastes produced by the pharmaceutical and food industries. Key additional chapters cover means of monitoring waste on site, pollution prevention, and site remediation. Including a timely evaluation of the role of biotechnology in contemporary industrial waste management, the Handbook reveals sound approaches and sophisticated technologies for treating -textile, rubber, and timber wastes -dairy, meat, and seafood industry wastes -bakery and soft drink wastes -palm and olive oil wastes -pesticide and livestock wastes -pulp and paper wastes -phosphate wastes -detergent wastes -photographic wastes -refinery and metal plating wastes -power industry wastes This state-of-the-art Second Edition is required reading for pollution control, environmental, chemical, civil, sanitary, and industrial engineers; environmental scientists; regulatory health officials; and upper-level undergraduate and graduate students in these disciplines.
This Volume covers protocols for various applications in hydrocarbon microbiology, including those of interest for industrial processes, biocatalysis, lipid and biofuel production, bioproducts, or the human microbiome. It presents detailed protocols for the functional screening of enzymes acting on greasy molecules (i.e. lipases, esterases), including assays for enantioselective biocatalysts, as well as approaches for protein display technologies. Protocols for improving fuel quality and production of biofuel and lipids in different hosts (bacteria, algae, yeast) are also provided. The production of biogas from organic waste and its fermentation into value-added products such as polyhydroxyalkanoates is covered, as well as an in-vitro model of the gut microbiome for short-chain fatty acid metabolism and microbial diversity analyses. The applications presented are examples of the many potential applications in hydrocarbon and lipid microbiology, and many (i.e. protein-display technologies) will also be of interest in other research fields. Hydrocarbon and Lipid Microbiology Protocols There are tens of thousands of structurally different hydrocarbons, hydrocarbon derivatives and lipids, and a wide array of these molecules are required for cells to function. The global hydrocarbon cycle, which is largely driven by microorganisms, has a major impact on our environment and climate. Microbes are responsible for cleaning up the environmental pollution caused by the exploitation of hydrocarbon reservoirs and will also be pivotal in reducing our reliance on fossil fuels by providing biofuels, plastics and industrial chemicals. Gaining an understanding of the relevant functions of the wide range of microbes that produce, consume and modify hydrocarbons and related compounds will be key to responding to these challenges. This comprehensive collection of current and emerging protocols will facilitate acquisition of this understanding and exploitation of useful activities of such microbes.
The 2nd edition of Fundamentals of Wastewater Treatment and Design introduces readers to the fundamental concepts of wastewater treatment, followed by engineering design of unit processes for sustainable treatment of municipal wastewater and resource recovery. It has been completely updated with new chapters to reflect current advances in design, resource recovery practices and research. Another highlight is the addition of the last chapter, which provides a culminating design experience of both urban and rural wastewater treatment systems. Filling the need for a textbook focused on wastewater, it covers history, current practices, emerging concerns, future directions and pertinent regulations that have shaped the objectives of this important area of engineering. Basic principles of reaction kinetics, reactor design and environmental microbiology are introduced along with natural purification processes. It also details the design of unit processes for primary, secondary and advanced treatment, as well as solids processing and removal. Recovery of water, energy and nutrients are explained with the help of process concepts and design applications. This textbook is designed for undergraduate and graduate students who have some knowledge of environmental chemistry and fluid mechanics. Professionals in the wastewater industry will also find this a handy reference.
Rapid developments in the field precipitated by the increased demand for clean burner systems have rendered much of the published literature outdated. With the Industrial Burners Handbook, best-selling author, editor, and combustion expert Charles Baukal, Jr. fills this gap. This handbook is a comprehensive reference dedicated to the design and applications of industrial burners. In addition to a solid introduction to combustion and burner fundamentals, an outstanding panel of contributing authors address all major burner types and explore a range of topics never before adequately covered in a handbook, including noise, burner controls, and physical modeling.
This book provides a critical, carefully researched, up-to-date summary of membranes for membrane bioreactors. It presents a comprehensive and self-contained outline of the fundamentals of membrane bioreactors, especially their relevance as an advanced water treatment technology. This outline helps to bring the technology to the readers' attention, and positions the critical topic of membrane fouling as one of the key impediments to its more widescale adoption. The target readership includes researchers and industrial practitioners with an interest in membrane bioreactors.
The proceedings in this work present 60 papers on mine and mill tailings and mine waste, as well as current and future issues facing the mining and environmental communities. This includes matters dealing with technical capabilities and developments, regulations, and environmental concerns.
The books currently available on this subject contain some elements of physical-chemical treatment of water and wastewater but fall short of giving comprehensive and authoritative coverage. They contain some equations that are not substantiated, offering empirical data based on assumptions that are therefore difficult to comprehend. This text brings together the information previously scattered in several books and adds the knowledge from the author's lectures on wastewater engineering.
Municipal solid waste (MSW) disposal is an ever-increasing problem in many parts of the world, especially in developing countries. To date, landfilling is still the preferred option for the disposal and management of MSW due to its low-cost operation. While this solution is advantageous from a cost perspective, it introduces a high level of potential pollutants which can be detrimental to the local environment. Control and Treatment of Landfill Leachate for Sanitary Waste Disposal presents research-based insights and solutions for the proper management and treatment of landfill leachate. Highlighting relevant topics on emerging technologies and treatment innovations for minimizing the environmental hazards of waste disposal, this innovative publication contributes to filling in many of the gaps that exist in the current literature available on leachate treatment. Waste authorities, solid waste management companies, landfill operators, legislators, environmentalists, graduate students, and researchers will find this publication beneficial to their professional and academic interests in the area of waste treatment and management.
This book presents an overview of the characterization of electronic waste. In addition, processing techniques for the recovery of metals, polymers and ceramics are described. This book serves as a source of information and as an educational technical reference for practicing scientists and engineers, as well as for students.
FROM THE PREFACE |
You may like...
Nonlinear Approaches in Engineering…
Liming Dai, Reza N. Jazar
Hardcover
R5,244
Discovery Miles 52 440
Noether's Theorems - Applications in…
Gennadi Sardanashvily
Hardcover
Measurements and their Uncertainties - A…
Ifan Hughes, Thomas Hase
Hardcover
R2,694
Discovery Miles 26 940
Optimization on Metric and Normed Spaces
Alexander J Zaslavski
Hardcover
R2,893
Discovery Miles 28 930
Stochastic Optimal Control in Infinite…
Giorgio Fabbri, Fausto Gozzi, …
Hardcover
R6,052
Discovery Miles 60 520
|