![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Life sciences: general issues > Genetics (non-medical)
Technologies like CRISPR and gene drives are ushering in a new era of genetic engineering, wherein the technical means to modify DNA are cheaper, faster, more accurate, more widely accessible, and with more far-reaching effects than ever before. These cutting-edge technologies raise legal, ethical, cultural, and ecological questions that are so broad and consequential for both human and other-than-human life that they can be difficult to grasp. What is clear, however, is that the power to directly alter not just a singular form of life but also the genetics of entire species and thus the composition of ecosystems is currently both inadequately regulated and undertheorized. In Gene Editing, Law, and the Environment, distinguished scholars from law, the life sciences, philosophy, environmental studies, science and technology studies, animal health, and religious studies examine what is at stake with these new biotechnologies for life and law, both human and beyond.
ONE OF AMAZON'S TOP 100 BOOKS OF 2014 Neanderthal Man tells the story of geneticist Svante Paabo's mission to answer this question: what can we learn from the genomes of our closest evolutionary relatives? Beginning with the study of DNA in Egyptian mummies in the early 1980s and culminating in the sequencing of the Neanderthal genome in 2010, Neanderthal Man describes the events, intrigues, failures, and triumphs of these scientifically rich years through the lens of the pioneer and inventor of the field of ancient DNA. We learn that Neanderthal genes offer a unique window into the lives of our hominid relatives and may hold the key to unlocking the mystery of why humans survived while Neanderthals went extinct. Paabo's findings have not only redrawn our family tree, but recast the fundamentals of human history,the biological beginnings of fully modern Homo sapiens , the direct ancestors of all people alive today.
Volume I of this book provides a comprehensive discussion of the factors involved in regulation of the cell cycle, the general biological properties of growth factors, and the receptor and postreceptor mechanisms of action of these signaling agents. It evaluates the possible role of growth factors in the regulation of proto-oncogene and tumor suppressor gene expression, and the development of neoplastic processes is discussed in detail.
Topology and Physics of Circular DNA presents comprehensive coverage of the physical properties of circular DNA. The author examines how topological constraints arising from cyclization of DNA lead to distinctive properties that make closed molecules radically different from linear DNA. The phenomenon of supercoiling, its geometric and topological analysis, and the formation of noncanonical structures in circular DNA under the influence of supercoiling are emphasized. The combination of consistent theoretical analysis and detailed treatment of major experimental approaches make Topology and Physics of Circular DNA an important reference volume for biophysicists, biochemists, molecular biologists, and researchers and students who want to expand their understanding of circular DNA.
Biologist James Watson and physicist Francis Crick's 1953 revelation about the double helix structure of DNA is the foundation of virtually every advance in our modern understanding of genetics and molecular biology. But how did Watson and Crick do it-and why were they the ones who succeeded? In truth, the discovery of DNA's structure is the story of a race among five scientists for advancement, fame and immortality: Watson, Crick, Rosalind Franklin, Maurice Wilkins and Linus Pauling. They were fascinating and brilliant, with strong personalities that often clashed. But it is Rosalind Franklin who becomes a focal point for Howard Markel. The Secret of Life is a story of genius and perseverance but also a saga of cronyism, misogyny, anti-Semitism and misconduct. Markel brilliantly recounts the intense intellectual journey-and the fraught personal relationships-that resulted in the discovery of DNA.
For decades, Emery and Rimoin's Principles and Practice of Medical Genetics and Genomics has served as the ultimate resource for clinicians integrating genetics into medical practice. With detailed coverage in contributions from over 250 of the world's most trusted authorities in medical genetics and a series of 11 volumes available for individual sale, the Seventh Edition of this classic reference includes the latest information on seminal topics such as prenatal diagnosis, genome and exome sequencing, public health genetics, genetic counseling, and management and treatment strategies to complete its coverage of this growing field for medical students, residents, physicians, and researchers involved in the care of patients with genetic conditions. This comprehensive yet practical resource emphasizes theory and research fundamentals related to applications of medical genetics across the full spectrum of inherited disorders and applications to medicine more broadly. This volume, Foundations, summarizes basic theories, concepts, research areas, and the history of medical genetics, providing a contextual framework for integrating genetics into medical practice. In this new edition, clinically oriented information is supported by full-color images and expanded sections on the foundations of genetic analytics, next generation sequencing, and therapeutics. With regular advances in genomic technologies propelling precision medicine into the clinic, Emery and Rimoin's Principles and Practice of Medical Genetics and Genomics: Seventh Edition bridges the gap between high-level molecular genetics and practical application and serves as an invaluable clinical tool for the health professionals and researchers.
Mapping the genomic landscapes is one of the most exciting frontiers of science. We have the opportunity to reverse engineer the blueprints and the control systems of living organisms. Computational tools are key enablers in the deciphering process. This book provides an in-depth presentation of some of the important computational biology approaches to genomic sequence analysis. The first section of the book discusses methods for discovering patterns in DNA and RNA. This is followed by the second section that reflects on methods in various ways, including performance, usage and paradigms.
With recent technological advances, vast quantities of genetic and genomic data are being generated at an ever-increasing pace. The explosion in access to data has transformed the field of evolutionary genetics. A thorough understanding of evolutionary principles is essential for making sense of this, but new skill sets are also needed to handle and analyze big data. This contemporary textbook covers all the major components of modern evolutionary genetics, carefully explaining fundamental processes such as mutation, natural selection, genetic drift, and speciation. It also draws on a rich literature of exciting and inspiring examples to demonstrate the diversity of evolutionary research, including an emphasis on how evolution and selection has shaped our own species. Practical experience is essential for developing an understanding of how to use genetic and genomic data to analyze and interpret results in meaningful ways. In addition to the main text, a series of online tutorials using the R language serves as an introduction to programming, statistics, and analysis. Indeed the R environment stands out as an ideal all-purpose source platform to handle and analyze such data. The book and its online materials take full advantage of the authors' own experience in working in a post-genomic revolution world, and introduces readers to the plethora of molecular and analytical methods that have only recently become available. Evolutionary Genetics is an advanced but accessible textbook aimed principally at students of various levels (from undergraduate to postgraduate) but also for researchers looking for an updated introduction to modern evolutionary biology and genetics.
Human Population Genetics and Genomics provides researchers/students with knowledge on population genetics and relevant statistical approaches to help them become more effective users of modern genetic, genomic and statistical tools. In-depth chapters offer thorough discussions of systems of mating, genetic drift, gene flow and subdivided populations, human population history, genotype and phenotype, detecting selection, units and targets of natural selection, adaptation to temporally and spatially variable environments, selection in age-structured populations, and genomics and society. As human genetics and genomics research often employs tools and approaches derived from population genetics, this book helps users understand the basic principles of these tools. In addition, studies often employ statistical approaches and analysis, so an understanding of basic statistical theory is also needed.
Evaluating the Statistical Significance of Multiple Distinct Local Alignments; S.F. Altscul. Hidden Markov Models for Human Genes: Periodic Patterns in Exon Sequence; S. Brunak. Identification of Muscle-Specific Transcriptional Regulatory Regions; J.W. Fickett. A Systematic Analysis of Gene Functions by the Metabolic Pathway Database; M. Kanehisa. Polymer Dynamics of DNA, Chromatin and Chromosomes; J. Langowski. Is Whole Human Genome Sequencing Feasible?; E.W. Myers. Sequence patterns Diagnostic of Structure and Function; T.F. Smith. Recognizing Functional Domains in Biological Sequences; G.D. Stormo. Stochastic Modelling in Molecular Genetics; P. Tautu. The Integrated Genomic Database (IGD): Enhancing the Productivity of Gene Mapping Projects; S.P. Bryant. Error Analysis of Genetic Linkage Data; R. Cottingham. Managing Accelerating Data Growth in the Genome Database; K.H. Fasman. Advances in Statistical Methods for Linkage Analysis; D.E. Weeks. Exploring Heterogeneous Molecular Biology Databases in the Context of the Object-Protocol Model; V.M. Markowitz. Comprehensive Genome Information Systems; O. Ritter. Visualizing the Genome; D.B. Searls. Data Management for Ligand-Based Drug Design; K. Aberer. 7 Additional Articles. Index.
This volume details methods and protocols to further the study of stem cells within the computational stem cell biology (CSCB) field. Chapters are divided into four sections covering the theory and practice of modeling of stem cell behavior, analyzing single cell genome-scale measurements, reconstructing gene regulatory networks, and metabolomics. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Computational Stem Cell Biology: Methods and Protocols will be an invaluable guide to researchers as they explore stem cells from the perspective of computational biology.
Arthropods are important to worldwide agriculture, food safety, human health, and energy production. Besides their practical significance, various species represent excellent model systems for biological investigations of evolution, development, physiology, reproduction, and social interaction. For these reasons, arthropod genomics is receiving increasing attention from researchers around the globe. Protocols for Cytogenetic Mapping of Arthropod Genomes is a collection of up-to-date, detailed protocols for physical chromosome mapping and their applications for studying genome organization and evolution in insects and ticks. This book brings together the expertise of cytogeneticists working on diverse groups of arthropods. Each chapter demonstrates approaches to tissue dissection, chromosome preparation, fluorescence in situ hybridization, and imaging. The book is a timely and complementary effort to the i5K initiative, which will obtain whole-genome sequences for 5,000 insect and related arthropod species. This comprehensive resource provides cytogeneticists with the necessary background and protocols to understand and develop chromosome-based genome assemblies from such whole-genome sequence data.
What are genes? What do genes do? These questions are not simple and straightforward to answer; at the same time, simplistic answers are quite prevalent and are taken for granted. This book aims to explain the origin of the gene concept, its various meanings both within and outside science, as well as to debunk the intuitive view of the existence of 'genes for' characteristics and disease. Drawing on contemporary research in genetics and genomics, as well as on ideas from history of science, philosophy of science, psychology and science education, it explains what genes are and what they can and cannot do. By presenting complex concepts and research in a comprehensible and rigorous manner, it examines the potential impact of research in genetics and genomics and how important genes actually are for our lives. Understanding Genes is an accessible and engaging introduction to genes for any interested reader.
Applied Microbiology and Bioengineering: An Interdisciplinary Approach discusses recent advances in microbiology and cutting-edge biotechnology that have generated interest among researchers. The book is divided into several sections, including Enzymes in Bioprocessing, Human Health, Microbial Physiology and Biomedical Applications, and Bioprocess Development. Included are some of the latest developments in the field, like smart actuators for innovative biomedical applications, microalgal antenna engineering for improved bioprocess of biofuel, cell line engineering, and synbiotic foods. It is a useful reference for those in the applied microbiology and biotechnology fields, but will also be useful for practitioners in biotech.
Helicases from All Domains of Life is the first book to compile information about helicases from many different organisms in a single volume. Research in the helicase field has been going on for a long time now, but the completion of so many genomes of these ubiquitous enzymes has made it difficult to keep up with new discoveries. As the huge number of identified DNA and RNA helicases, along with the structural and functional differences among them, make it difficult for the interested scholar to grasp a comprehensive view of the field, this book helps fill in the gaps.
Computational Non-coding RNA Biology is a resource for the computation of non-coding RNAs. The book covers computational methods for the identification and quantification of non-coding RNAs, including miRNAs, tasiRNAs, phasiRNAs, lariat originated circRNAs and back-spliced circRNAs, the identification of miRNA/siRNA targets, and the identification of mutations and editing sites in miRNAs. The book introduces basic ideas of computational methods, along with their detailed computational steps, a critical component in the development of high throughput sequencing technologies for identifying different classes of non-coding RNAs and predicting the possible functions of these molecules. Finding, quantifying, and visualizing non-coding RNAs from high throughput sequencing datasets at high volume is complex. Therefore, it is usually possible for biologists to complete all of the necessary steps for analysis.
A Probabilistic Model of the Genotype/Phenotype Relationship provides a new hypothesis on the relationship between genotype and phenotype. The main idea of the book is that this relationship is probabilistic, in other words, the genotype does not fully explain the phenotype. This idea is developed and discussed using the current knowledge on complex genetic diseases, phenotypic plasticity, canalization and others.
How scientific advances in genetic modification will fundamentally change the natural world The process of manipulating the genetic material of one animal to include the DNA of another creates a new transgenic organism. Several animals, notably goats, mice, sheep, and cattle are now genetically modified in this way. In Our Transgenic Future, Lisa Jean Moore wonders what such scientific advances portend. Will the natural world become so modified that it ceases to exist? After turning species into hybrids, can we ever get back to the original, or are they forever lost? Does genetic manipulation make better lives possible, and if so, for whom? Moore centers the story on goats that have been engineered by the US military and civilian scientists using the DNA of spiders. The goat's milk contains a spider-silk protein fiber; it can be spun into ultra-strong fabric that can be used to manufacture lightweight military body armor. Researchers also hope the transgenically produced spider silk will revolutionize medicine with biocompatible medical inserts such as prosthetics and bandages. Based on in-depth research with spiders in Florida and transgenic goats in Utah, Our Transgenic Future focuses on how these spidergoats came into existence, the researchers who maintain them, the funders who have made their lives possible, and how they fit into the larger science of transgenics and synthetics. This book is a fascinating story about the possibilities of science and the likely futures that may come.
Devised in the 1940s by the biologist C. H. Waddington, the epigenetic landscape is a metaphor for how gene regulation modulates cellular development. As a scientific model, it fell out of use in the late 1960s but returned at the beginning of the twenty-first century with the advent of big-data genomic research because of its utility among scientists across the life sciences to think more creatively about and to discuss genetics. In Epigenetic Landscapes Susan Merrill Squier follows the model's cultural trail, from its first visualization by the artist John Piper to its use beyond science. Squier examines three cases in which the metaphor has been imaginatively deployed to illustrate complex systems that link scientific and cultural practices: graphic medicine, landscape architecture, and bioArt. Challenging reductive understandings of epigenetics, Squier boldly reclaims the broader significance of the epigenetic landscape as a figure at the nexus of art, design, and science.
This second edition of Protein Purification provides a guide to the major chromatographic techniques, including non-affinity absorption techniques, affinity procedures, non-absorption techniques and methods for monitoring protein purity. The new edition of the book has been organized to encourage incremental learning about the topic, starting with the properties of water, progressing through the characteristics of amino acids and proteins which relate to the purification process. There is an overview of protein strategy and equipment, followed by discussions and examples of each technique and their applications. The basic theory and simple explanations given in Protein Purification make it an ideal handbook for final year undergraduates, and postgraduates, who are conducting research projects. It will also be a useful guide to more experienced researchers who need a good overview of the techniques and products used in protein purification. Key Features * Guide to the major techniques used in protein purification * Includes flowcharts to help the reader slect the best purification strategy * Contains step-by-step protocols that guide the reader through each technique and its use * Includes exercises and solutions
This title offers 62 chapters divided among three volumes covering the latest topics dealing with Doubled Haploid (DH) technology, as well as methods to produce DHs in different species through different in vivo and in vitro approaches. Volume 1 explores general topics and transversal methods in DH technology; DH production in two alliaceae, onion, and leek; and DH production in cereals such as barley, durum, bread, oat, and japonica rice. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, application details for both the expert and non-expert reader, and tips on troubleshooting and avoiding known pitfalls. Authoritative and comprehensive, Doubled Haploid Technology, Volume 1: General Topics, Alliaceae, Cereals is a valuable resource for scientists and researchers looking to learn more about this interesting and developing field.
Epigenetics in Human Disease, Second Edition examines the diseases and conditions on which we have advanced knowledge of epigenetic mechanisms, such as cancer, autoimmune disorders, aging, metabolic disorders, neurobiological disorders and cardiovascular disease. In addition to detailing the role of epigenetics in the etiology, progression, diagnosis and prognosis of these diseases, novel epigenetic approaches to treatment are also explored. Fully revised and up-to-date, this new edition discusses topics of current interest in epigenetic research, including stem cell epigenetic therapy, bioinformatic analysis of NGS data, and epigenetic mechanisms of imprinting disorders. Further sections explore online epigenetic tools and datasets, early-life programming of epigenetics in age-related diseases, the epigenetics of addiction and suicide, and epigenetic approaches to regulating and preventing diabetes, cardiac disease, allergic disorders, Alzheimer's disease, respiratory diseases, and many other human maladies.
Recent trends in Nanomedicine and Tissue Engineering covers numerous recent technological and research accomplishments in the area of Nanomedicine and Tissue Engineering. The introduction of nanomaterials and nanotechnology have led to crucial advancements in the fields of nanomedicine and tissue engineering, as well as cancer therapies and drug delivery systems. The book follows recent trends in drug delivery systems, wound healing fields, cancer therapies, protection of teeth and also other health care systems. Technical topics discussed include: * Nanorobots * Tissue engineering * Gene therapy * Drug delivery * Nanomotors * Nanogels
Basics of proteins and proteomics techniques In-depth understanding of mass-spectrometry and quantitative proteomics An overview of interactomics and its application for translational research. Advancement in the field of proteomics and challenges in clinical applications. |
![]() ![]() You may like...
RHS Great British Village Show - What…
Thane Prince, Matthew Biggs
Hardcover
![]()
|