![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Life sciences: general issues > Genetics (non-medical)
"Socio-Genetics" seeks to understand both the genetic and
environmental contributions to individual variations in behavior.
Behaviors, like all complex traits, involve multiple genes, a
reality that complicates the search for genetic contributions. As
with much other research in genetics, studies of genes and behavior
require analysis of families and populations for comparison of
those who have the trait in question with those who do not. The
result commonly is a statement of "heritability," a statistical
construct that estimates the amount of variation in a population
that is attributable to genetic factors. The explanatory power of
heritability figures is limited, however, applying only to the
population studied and only to the environment in place at the time
the study was conducted. If the population or the environment
changes, the heritability most likely will change as well. Focused
on the genetics of complex traits in a variety of
organisms-honeybees, mice, and nematodes-this volume discusses
environmental influence on genetic programs and evolutionary
genetics. Such research is proving important in furthering our
understanding of the genetic basis of such diseases as obesity,
schizophrenia, multiple sclerosis, and autism, to name a few.
The biological function of clusterin (CLU, also known as ApoJ, SGP2, TRPM2, CLI) has been puzzling researchers since its discovery and characterization in the early 1980s. Approaches such as cloning, expression and functional characterization of the different protein products generated by the CLU gene have now produced a critical mass of information of tremendous biological importance that are teaching us an important lesson in molecular biology of gene expression regulation. This volume brings together the contributions of top researchers in the field, providing an overview and synthesis of the latest thought and findings relating to CLU.
The discovery of stem and progenitor cells in the adult mammalian CNS challenged the long standing no new neuron doctrine and opened the door to the potential for cell replacement therapy. The process from discovery to clinical applications can be long and tortuous, requiring rigorous steps involving standardized and precise protocols. "Neural Progenitor Cells: Methods and Protocols "is a collection of practical articles describing techniques used to study neural stem and progenitor cells. The volume also highlights the promise of stem cell-based therapeutic applications for CNS disorders. Written in the successful "Methods in Molecular Biology" series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, "Neural Progenitor Cells: Methods and Protocols "serves both professionals and novices with its well-honed methodologies. "
This fully revised 2e provides the only unified synthesis of
available information concerning the mechanisms of higher-order
memory formation. It spans the range from learning theory, to human
and animal behavioral learning models, to cellular physiology and
biochemistry. It is unique in its incorporation of chapters on
memory disorders, tying in these clinically important syndromes
with the basic science of synaptic plasticity and memory
mechanisms. It also covers cutting-edge approaches such as the use
of genetically engineered animals in studies of memory and memory
diseases. Written in an engaging and easily readable style and
extensively illustrated with many new, full-color figures to help
explain key concepts, this book demystifies the complexities of
memory and deepens the reader s understanding.
Appropriate for a wide range of disciplines, from biology to
non-biology, law and nursing majors, "DNA and Biotechnology" uses a
straightforward and comprehensive writing style that gives the
educated layperson a survey of DNA by presenting a brief history of
genetics, a clear outline of techniques that are in use, and
highlights of breakthroughs in hot topic scientific
discoveries. Engaging and straightforward scientific writing style Comprehensive forensics chapter Parallel Pedagogic material designed to help both readers and teachers. Highlights in the latest scientific discoveries Outstanding full-color illustration that walk reader through complex concepts
Regulation of gene expression, a major determinant of gene activity, occupies a central place in molecular biology. Yeast Genetic Networks: Methods and Protocols covers approaches to the systems biological analysis of small-scale gene networks in yeast. Divided into four convenient sections, this detailed volume discusses the methods used to analyze gene expression quantitatively, presents a collection of mathematical and computational tools to analyze stochasticity, adaptation, sensitivity in signal transmission, and oscillations in gene expression, provides instructional methods on how to utilize the tools of quantitative genetics to identify genes that regulate stochasticity and oscillations in gene expression, and concludes with a section devoted to the analysis of conserved gene expression systems and networks in different fungal species. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Yeast Genetic Networks: Methods and Protocols serves as an ideal and valuable resource for both novices and experienced researchers.
Genes interact with environment, experience, and the biology of the
brain to shape an animal s behavior. This latest volume in Advances
in Genetics, organized according to the most widely used model
organisms, describes the latest genetic discoveries in relation to
neural circuit development and activity.
This volume provides an overview on design PCR primers for successful DNA amplification. Chapters focus on primer design strategies for quantitative PCR, in silico PCR primer design, and primer design using software. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, PCR Primer Design, Second Edition seeks to aid molecular biology students, researchers, professors and PCR enthusiasts.
Adult Stem Cells, second edition, takes a critical look at issues concerning the developmental or differentiation potential for a variety of tissue types and for specific adult stem cell types. Since the first edition appeared a decade ago, our understanding of adult stem cells, and more specifically tissue-specific adult stem cells, has advanced tremendously. And an increased interest in regenerative medicine and potential stem cell applications has driven a quest for better understanding of stem cell biology. In turn, this has spawned much activity on generation and utilization of more and better reagents to identify and isolate stem cells and stem cell-like subpopulations, and on assays elucidating their developmental or differentiation potential and functional integration with host tissues and organs. In this fully updated new edition, chapters cover topics ranging from signaling pathways maintaining stemness in hematopoietic cells to regeneration after injury and endocrine mechanisms underlying the stem cell theory of aging. Other chapters cover stem cells by organ or system including pituitary, cardiac, epithelial, teeth, lung, ovary, prostate, liver, and many more. Importantly, the authors of the chapters have not only summarized their successes, but have also summarized some of the difficulties that each particular field is still facing with respect to maximizing the utility of stem cells in clinical settings. Collectively, they impart both the excitement and challenges facing stem cell utilization for repair and regeneration making this book essential reading for those involved in stem cell research as well as those involved in clinical assays.
This is a reference handbook for young researchers exploring gene and cell therapy. Gene therapy could be defined as a set of strategies modifying gene expression or correcting mutant/defective genes through the administration of DNA (or RNA) to cells, in order to treat disease. Important advances like the discovery of RNA interference, the completion of the Human Genome project or the development of induced pluripotent stem cells (iPSc) and the basics of gene therapy are covered. This is a great book for students, teachers, biomedical researchers delving into gene/cell therapy or researchers borrowing skills from this scientific field.
Burkholderia are a multi-faceted group of bacteria with considerable genetic and metabolic diversity and very versatile lifestyles. In this book leading international investigators review key advances in Burkholderia research to provide timely overview. The topics covered include: genomic taxonomy and biodiversity, comparative genomics, molecular epidemiology, transcriptomics, proteomics, molecular pathogenesis of virulence in B. mallei/B. pseudomallei and the Burkholderia cepacia complex. The theme underpinning each chapter is the use of DNA/protein sequence data and post-genomic technologies to understand Burkholderia biology.
This volume is aimed in general at scientists who have an interest
in deciphering the molecular mechanisms for sequence recognition of
DNA. The methods have general applicability to small molecules as
well as oligomers and proteins, while the examples provide general
principles involved in sequence recognition.
Great disparities exist between organisms with regard to the relative ease of chromosomal mutagenesis and manipulation. In Chromosomal Mutagenesis, a team of experts provide a variety of chromosomal manipulation techniques, including insertional gene disruptions, gene knockouts, stimulated homologous recombination techniques and other novel tools, for both prokaryotic and eukaryotic organisms, and attempt to expand the genetic toolbox beyond model organisms. Following the format of the highly successful Methods in Molecular Biology format, each chapter offers step-by-step laboratory instructions, lists of the necessary equipment and reagents, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and cutting-edge, Chromosomal Mutagenesis covers state-of-the-art techniques that are staged to expand, if not revolutionize, genetic analysis in the long neglected and relevant cell types.
* Comprehensive and an easily accessible reference volume for developing, running, and analyzing biomedical research using the rat as model system Grown exponentially by the genomic revolution, the use of the rat as a model of choice for physiological studies continues in popularity and at a much greater depth of understanding. In Rat Genomics: Methods and Protocols, world-wide experts provide both practical information for researchers involved in genomic research in the rat along with a more contextual discussion about the usefulness of the rat in physiological or translational research in different organs and systems. The volume extensively covers topics including genome sequencing, quantitative trait loci mapping, and the identification of single nucleotide polymorphisms as well as the development of transgenic technologies such as nuclear cloning, lentiviral-mediated transgenesis, gene knock-down using RNA interference, gene knock-out by mutagenesis, and zinc finger nucleases plus exciting advances in the obtention of rat embryonic cell lines. As a volume in the highly successful Methods in Molecular BiologyT series, this work provides the kind of detailed description and implementation advice that is crucial for getting optimal results. Comprehensive and up-to-date, Rat Genomics: Methods and Protocols thoroughly covers the current techniques used in labs around the world and overviews the applications of the data obtained, making it certain to be useful to the scientific community as a key source of references and methods.
Specific complexes of protein and RNA carry out many essential
biological functions, including RNA processing, RNA turnover, RNA
folding, as well as the translation of genetic information from
mRNA into protein sequences. Messenger RNA (mRNA) decay is now
emerging as an important control point and a major contributor to
gene expression. Continuing identification of the protein factors
and cofactors, and mRNA instability elements, responsible for mRNA
decay allow researchers to build a comprehensive picture of the
highly orchestrated processes involved in mRNA decay and its
regulation.
Specific complexes of protein and RNA carry out many essential
biological functions, including RNA processing, RNA turnover, and
RNA folding, as well as the translation of genetic information from
mRNA into protein sequences. Messenger RNA (mRNA) decay is now
emerging as an important control point and a major contributor to
gene expression. Continuing identification of the protein factors
and cofactors and mRNA instability elements responsible for mRNA
decay allow researchers to build a comprehensive picture of the
highly orchestrated processes involved in mRNA decay and its
regulation.
The field of genetics is rapidly evolving and new medical breakthroughs are occurring as a result of advances in knowledge gained from genetics research. This series continually publishes important reviews of the broadest interest to geneticists and their colleagues in affiliated disciplines.
The field of genetics is rapidly evolving and new medical breakthroughs are occurring as a result of advances in knowledge gained from genetics research. This series continually publishes important reviews of the broadest interest to geneticists and their colleagues in affiliated disciplines.
Nucleic acids are the fundamental building blocks of DNA and RNA
and are found in virtually every living cell. Molecular biology is
a branch of science that studies the physicochemical properties of
molecules in a cell, including nucleic acids, proteins, and
enzymes. Increased understanding of nucleic acids and their role in
molecular biology will further many of the biological sciences,
including genetics, biochemistry, and cell biology. "Progress in
Nucleic Acid Research and Molecular Biology" is intended to bring
to light the most recent advances in these overlapping disciplines
with a timely compilation of reviews comprising each volume.
Historically the field of endocrine research has always been at the
forefront of scientific endeavors. The investigators of these
important breakthroughs in research have been rewarded by numerous
Nobel awards. In the field of diabetes alone, Nobel prizes have
been awarded to researchers who discovered insulin, characterized
the protein and invented radioimmunoassays using insulin as a
paradigm. Not surprisingly, biomedical researchers have always been
attracted by the endocrine system and other similar systems of
intercellular communication.
This book deals with the paradoxical role of autophagy in tumor suppression and tumor promotion in cancer cells. Autophagy plays opposing, context-dependent roles in tumors; accordingly, strategies based on inhibiting or stimulating autophagy could offer as potential cancer therapies. The book elucidates the physiological role of autophagy in modulating cancer metastasis, which is the primary cause of cancer-associated mortality. Further, it reviews its role in the differentiation, development, and activation of multiple immune cells, and its potential applications in tumor immunotherapy. In addition, it examines the effect of epigenetic modifications of autophagy-associated genes in regulating tumor growth and therapeutic response and summarizes autophagy's role in the development of resistance to a variety of anti-cancer drugs in cancer cells. In closing, it assesses autophagy as a potential therapeutic target for cancer treatment. Given its scope, the book offers a valuable asset for all oncologists and researchers who wish to understand the potential role of autophagy in tumor biology. |
![]() ![]() You may like...
Twin Research for Everyone - From…
Adam D. Tarnoki, David L. Tarnoki, …
Paperback
R3,831
Discovery Miles 38 310
Pathogenic Neisseria - Genomics…
John K. Davies, Charlene M. Kahler
Hardcover
R6,977
Discovery Miles 69 770
Long Noncoding RNAs in Plants - Roles in…
Santosh Kumar Upadhyay
Paperback
R4,236
Discovery Miles 42 360
|