![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Life sciences: general issues > Genetics (non-medical)
Appropriate for a wide range of disciplines, from biology to
non-biology, law and nursing majors, "DNA and Biotechnology" uses a
straightforward and comprehensive writing style that gives the
educated layperson a survey of DNA by presenting a brief history of
genetics, a clear outline of techniques that are in use, and
highlights of breakthroughs in hot topic scientific
discoveries. Engaging and straightforward scientific writing style Comprehensive forensics chapter Parallel Pedagogic material designed to help both readers and teachers. Highlights in the latest scientific discoveries Outstanding full-color illustration that walk reader through complex concepts
Genes interact with environment, experience, and the biology of the
brain to shape an animal s behavior. This latest volume in Advances
in Genetics, organized according to the most widely used model
organisms, describes the latest genetic discoveries in relation to
neural circuit development and activity.
The discovery of stem and progenitor cells in the adult mammalian CNS challenged the long standing no new neuron doctrine and opened the door to the potential for cell replacement therapy. The process from discovery to clinical applications can be long and tortuous, requiring rigorous steps involving standardized and precise protocols. "Neural Progenitor Cells: Methods and Protocols "is a collection of practical articles describing techniques used to study neural stem and progenitor cells. The volume also highlights the promise of stem cell-based therapeutic applications for CNS disorders. Written in the successful "Methods in Molecular Biology" series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, "Neural Progenitor Cells: Methods and Protocols "serves both professionals and novices with its well-honed methodologies. "
Burkholderia are a multi-faceted group of bacteria with considerable genetic and metabolic diversity and very versatile lifestyles. In this book leading international investigators review key advances in Burkholderia research to provide timely overview. The topics covered include: genomic taxonomy and biodiversity, comparative genomics, molecular epidemiology, transcriptomics, proteomics, molecular pathogenesis of virulence in B. mallei/B. pseudomallei and the Burkholderia cepacia complex. The theme underpinning each chapter is the use of DNA/protein sequence data and post-genomic technologies to understand Burkholderia biology.
Regulation of gene expression, a major determinant of gene activity, occupies a central place in molecular biology. Yeast Genetic Networks: Methods and Protocols covers approaches to the systems biological analysis of small-scale gene networks in yeast. Divided into four convenient sections, this detailed volume discusses the methods used to analyze gene expression quantitatively, presents a collection of mathematical and computational tools to analyze stochasticity, adaptation, sensitivity in signal transmission, and oscillations in gene expression, provides instructional methods on how to utilize the tools of quantitative genetics to identify genes that regulate stochasticity and oscillations in gene expression, and concludes with a section devoted to the analysis of conserved gene expression systems and networks in different fungal species. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Yeast Genetic Networks: Methods and Protocols serves as an ideal and valuable resource for both novices and experienced researchers.
Drawing on their extensive teaching experience, the authors bring the content to life using humorous and engaging language and show students how the principles of behavior relate to their everyday lives. The text's tried-and-true pedagogy make the content as clear as possible without oversimplifying the concepts. Each chapter includes study objectives, key terms, and review questions that encourage students to check their understanding before moving on, and incorporated throughout the text are real-world examples and case studies to illustrate key concepts and principles.This edition also features a new full-color design and nearly 400 color figures, tables, and graphs. The text is carefully tailored to the length of a standard academic semester and how behavior analysis courses are taught, with each section corresponding to a week's worth of coursework, and each chapter is integrated with the task list for Behavior Analyst Certification Board (BACB) certifications.
Great disparities exist between organisms with regard to the relative ease of chromosomal mutagenesis and manipulation. In Chromosomal Mutagenesis, a team of experts provide a variety of chromosomal manipulation techniques, including insertional gene disruptions, gene knockouts, stimulated homologous recombination techniques and other novel tools, for both prokaryotic and eukaryotic organisms, and attempt to expand the genetic toolbox beyond model organisms. Following the format of the highly successful Methods in Molecular Biology format, each chapter offers step-by-step laboratory instructions, lists of the necessary equipment and reagents, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and cutting-edge, Chromosomal Mutagenesis covers state-of-the-art techniques that are staged to expand, if not revolutionize, genetic analysis in the long neglected and relevant cell types.
This volume is aimed in general at scientists who have an interest
in deciphering the molecular mechanisms for sequence recognition of
DNA. The methods have general applicability to small molecules as
well as oligomers and proteins, while the examples provide general
principles involved in sequence recognition.
Specific complexes of protein and RNA carry out many essential
biological functions, including RNA processing, RNA turnover, RNA
folding, as well as the translation of genetic information from
mRNA into protein sequences. Messenger RNA (mRNA) decay is now
emerging as an important control point and a major contributor to
gene expression. Continuing identification of the protein factors
and cofactors, and mRNA instability elements, responsible for mRNA
decay allow researchers to build a comprehensive picture of the
highly orchestrated processes involved in mRNA decay and its
regulation.
Specific complexes of protein and RNA carry out many essential
biological functions, including RNA processing, RNA turnover, and
RNA folding, as well as the translation of genetic information from
mRNA into protein sequences. Messenger RNA (mRNA) decay is now
emerging as an important control point and a major contributor to
gene expression. Continuing identification of the protein factors
and cofactors and mRNA instability elements responsible for mRNA
decay allow researchers to build a comprehensive picture of the
highly orchestrated processes involved in mRNA decay and its
regulation.
The field of genetics is rapidly evolving and new medical breakthroughs are occurring as a result of advances in knowledge gained from genetics research. This series continually publishes important reviews of the broadest interest to geneticists and their colleagues in affiliated disciplines.
The field of genetics is rapidly evolving and new medical breakthroughs are occurring as a result of advances in knowledge gained from genetics research. This series continually publishes important reviews of the broadest interest to geneticists and their colleagues in affiliated disciplines.
Nucleic acids are the fundamental building blocks of DNA and RNA
and are found in virtually every living cell. Molecular biology is
a branch of science that studies the physicochemical properties of
molecules in a cell, including nucleic acids, proteins, and
enzymes. Increased understanding of nucleic acids and their role in
molecular biology will further many of the biological sciences,
including genetics, biochemistry, and cell biology. "Progress in
Nucleic Acid Research and Molecular Biology" is intended to bring
to light the most recent advances in these overlapping disciplines
with a timely compilation of reviews comprising each volume.
* Comprehensive and an easily accessible reference volume for developing, running, and analyzing biomedical research using the rat as model system Grown exponentially by the genomic revolution, the use of the rat as a model of choice for physiological studies continues in popularity and at a much greater depth of understanding. In Rat Genomics: Methods and Protocols, world-wide experts provide both practical information for researchers involved in genomic research in the rat along with a more contextual discussion about the usefulness of the rat in physiological or translational research in different organs and systems. The volume extensively covers topics including genome sequencing, quantitative trait loci mapping, and the identification of single nucleotide polymorphisms as well as the development of transgenic technologies such as nuclear cloning, lentiviral-mediated transgenesis, gene knock-down using RNA interference, gene knock-out by mutagenesis, and zinc finger nucleases plus exciting advances in the obtention of rat embryonic cell lines. As a volume in the highly successful Methods in Molecular BiologyT series, this work provides the kind of detailed description and implementation advice that is crucial for getting optimal results. Comprehensive and up-to-date, Rat Genomics: Methods and Protocols thoroughly covers the current techniques used in labs around the world and overviews the applications of the data obtained, making it certain to be useful to the scientific community as a key source of references and methods.
Gene therapy offers many conceptual advantages to treat muscle diseases, especially various forms of muscular dystrophies; however, it faces a number of unique challenges, including the need to deliver a therapeutic vector to all muscles throughout the body. In Muscle Gene Therapy: Methods and Protocols, expert researchers in the field present a collection of techniques aimed at bridging the translational gap in muscle gene therapy between the prevalent rodent models and vitally important larger animal models. Divided into three sections, this volume examines basic protocols for optimizing the muscle gene expression cassette and for evaluating the therapeutic outcomes, new developments in muscle gene therapy technology such as adeno-associated viral vector (AAV), oligonucleotide-mediated exon-skipping, and novel RNA-based strategies, and step-by-step guidance on muscle gene delivery in swine, ovine, canine, and non-human primates. Written in the highly successful Methods in Molecular Biology(TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, detailed, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Muscle Gene Therapy: Methods and Protocols serves as an invaluable resource for graduate students, post-doctoral fellows, and principle investigators pursuing the crucial advancement of muscle disease gene therapy in the hope of someday curing these debilitating disorders.
Ribonucleases are a ubiquitous and functionally diverse group of enzymes that have a common ability to cleave RNA. Either through scission of internal phosphodiesters, or removal of nucleotides from RNA 5' or 3' ends, ribonucleases perform essential roles in gene expression and regulation, genome replication and maintenance, host defense, stress response, and viral strategies of infection. Ribonucleases have also served as highly informative models to understand virtually every aspect of biomolecular structure and function. The fifteen chapters in this volume are written by recognized researchers in the field, and provide in-depth analyses of the major ribonuclease families. Particular focus is given to the relation of ribonuclease structure and mechanism to biological function, as well as ribonuclease dysfunction in certain disease states. Other topics include the evolutionary genetics and functional diversification of ribonucleases, engineered ribonucleases as anti-cancer agents, the mechanisms of action of artificial ribonucleases, and ribonucleases as models to understand protein folding and stability. This volume should serve as an essential reference for a broad range of researchers and educators with interests in RNA metabolism, enzymology, and gene regulation.
This book provides readers with an overview of the frequent occurrence of asymmetric cell division. Employing a broad range of examples, it highlights how this mode of cell division constitutes the basis of multicellular organism development and how its misregulation can lead to cancer. To underline such developmental correlations, readers will for example gain insights into stem cell fate and tumor growth. In turn, subsequent chapters include descriptions of asymmetric cell division from unicellular organisms to humans in both physiological and pathological conditions. The book also illustrates the importance of this process for evolution and our need to understand the background mechanisms, offering a valuable guide not only for students in the field of developmental biology but also for experienced researchers from neighboring fields.
Historically the field of endocrine research has always been at the
forefront of scientific endeavors. The investigators of these
important breakthroughs in research have been rewarded by numerous
Nobel awards. In the field of diabetes alone, Nobel prizes have
been awarded to researchers who discovered insulin, characterized
the protein and invented radioimmunoassays using insulin as a
paradigm. Not surprisingly, biomedical researchers have always been
attracted by the endocrine system and other similar systems of
intercellular communication.
After the generation of genome sequence data from a wide variety of plants, databases are filled with sequence information of genes with no known biological function, and while bioinformatics tools can help analyze genome sequences and predict gene structures, experimental approaches to discover gene functions need to be widely implemented. In Plant Reverse Genetics: Methods and Protocols, leading researchers in the field describe cutting-edge methods, both high-throughput and genome-wide, involving the models Arabidopsis and rice as well as several other plants to provide comparative functional genomics information. With chapters on the analysis of high-throughput genome sequence data, the identification of non-coding RNA from sequence information, the comprehensive analysis of gene expression by microarrays, and metabolomic analysis, the thorough methods of the book are fully supported by scripts to aid their computational use. Written in the highly successful Methods in Molecular Biology (TM) series format, the chapters contain introductions to their respective topics, lists of the necessary materials, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and essential, Plant Reverse Genetics: Methods and Protocols is an ideal guide for researchers seeking an understanding of how the complex web of plant genes work together in a systems biology view.
This text explores the most recent advances in NGS instrumentation and data anlysis. It begins with a comprehensive description of current NSG platforms, their sequencing chemistries, instrument specifications, and general workflows and procedures. A separate chapter is dedicated to low-quanitity, single molecule sequencing technology. Further chapters explore the application of NSG technologies in various fields. |
You may like...
Adult Coloring Book - Animals: Calming…
Zengalaxy Coloring Books
Hardcover
Towards an Ecological Intellectual…
David J. Jefferson
Hardcover
Cambridge English Exam Boosters IELTS…
Deborah Hobbs, Susan Hutchison
Paperback
R699
Discovery Miles 6 990
|