![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies
Advances in Food and Nutrition Research, Volume 100 provides the latest advances on emerging bioactive compounds with putative health benefits and their controlled release and application in foods and nutraceuticals, as well as up-to-date information on recent developments in food technology, including 3D printing, safety of raw materials and viruses in foods, and new low energy food processing.
Polymers for 3D Printing: Methods, Properties, and Characteristics provides a detailed guide to polymers for 3D printing, bridging the gap between research and practice, and enabling engineers, technicians and designers to utilise and implement this technology for their products or applications.
Rare Earth Metal-Organic Framework Hybrid Materials for Luminescence Responsive Chemical Sensors primarily focuses on rare earth functionalized metal-organic framework (MOF) hybrid materials for sensing applications. Sections cover an introduction to the field and key concepts like luminescence, rare earth ion luminescence and luminescence response for chemical sensing. Other section emphasize the luminescence response mode and sensing mechanisms of these important materials, including single mode and dual mode sensing, as well as chemical sensing mechanisms. Final sections outline different kinds of sensing analytes by rare earth functionalized MOFs hybrids and delve into emerging application. This book is suitable for materials scientists and engineers, materials chemists, chemists and chemical engineers. In addition, the material is appropriate for those working in academia and R&D in industry.
Protein nutrition and sustainability is a global challenge. Emerging Sources and Applications of Food Proteins provides the latest progresses about research and applications of emerging alternative proteins. Topics covered in this volume include rapeseed (canola) proteins, pulse proteins, insect proteins, fungal proteins, artificial meat, and new applications in bioactive peptides, nanotechnology, 3D printing, meat alternatives, with a focus on the consumer trend and practical applications.
Electrochemical Applications of Metal -Organic Frameworks: Advances and Future Potential brings together the basics of Metal-Organic Frameworks (MOFs and it's chemistry and electrochemistry), giving the reader an understanding of the complexities and possibilities of MOF electrochemistry. Providing in-depth coverage of various methods of the synthesis of MOFs for their electrochemical applications, the morphological and electrochemical properties of these materials are discussed along with their future development. Sections cover electrochemical applications of MOFs in batteries, supercapacitors, fuel cells, as anti-corrosive materials, sensors and in electrocatalysis, and more. Recent developments in MOFs that can hold active molecules such as enzymes, bacteria, nanoparticles and promote electrochemical activity are included. This book will be of great interest to researchers and professionals working in industry and academia or anyone interested in the applications of MOF in industrial processes.
Advances in Dietary Lipids and Human Health systematically summarizes recent research advances in dietary lipids and human health. The book proposes a strategy for the prevention of NCDs and the management of population and personal health through the rational use of dietary fat. It covers the relationship between total lipids, saturated and unsaturated fatty acids and NCDs, and other uncommon fatty acids, such as conjugated fatty acids, middle and short chain fatty acid, furan fatty acids, n-3 docosapentaenoic acid (DPA), and structured fat. Intended for nutrition researchers, dieticians, clinicians and others in academia who are focused on medicine, preventive medicine, public health and food science students, this valuable reference provides information that will assist readers in the prevention and treatment of cardiovascular disease, hypertension, metabolic disorders, diabetes, neuropsychiatric diseases, and cancer by specifically managing dietary lipids.
Recent Advances and Applications of Thermoset Resins, Second Edition provides a reference source for anyone interested in understanding the chemistry, processing, properties, composites and applications of thermoset resins. Sections cover the chemistry of thermoset resins and recent advances in various aspects, including toughening, micro-reinforcement, nano-reinforcement, simultaneous nano-reinforcement and toughening. The book provides detailed information on synthesis, characterization and processing techniques. A critical review of the latest advances in thermoset-based composites and nanocomposites is also presented, along with future directions of research in various areas of thermoset resins. This is a valuable resource for researchers, scientists and advanced students in polymer science, plastics engineering, adhesives and coatings, composites, and materials engineering, as well as R&D professionals, engineers and manufacturers with an interest in thermoset resins and materials for advanced applications.
Applications of Polyurethanes in Medical Devices provides detailed coverage of polyurethane (PU) chemistry, processing and preparation for performant medical devices. Polyurethanes have found many uses in medical applications, due to their biocompatibility, biostability, physical properties, surface polarity, and the ability to suit the field of application. This book enables the reader to understand polyurethane and how this valuable material can be used in medical devices. Sections cover the chemistry, structure, and properties of polyurethane, with in-depth sections examining raw materials, reaction chemistry, synthesis techniques, reaction kinetics, material microstructure, and structure-property relationships. Subsequent chapters demonstrate how polyurethane can be utilized in medical device applications, examining biological properties, rheology and processing before methodical coverage explains how polyurethane may be used for each category of medical device. Finally, future directions, and safety and environmental aspects, are covered.
Provides comprehensive coverage of the components available in fish roe and highlights their biological and nutritional effects as well as their sensory and safety attributes. Fish Roe: Biochemistry, Products, and Safety describes various components available in fish roe and introduces their biological and nutritional effects. In addition to addressing biological and nutritional effects, this book also explores fish roe products and their safety while also providing coverage of the bioactives that are naturally available in fish roe or generated during processing, thereby outlining the maximum benefits that can be obtained from this natural resource. Beginning with the introduction of fish roe production procedures worldwide, this book further explores the processing of traditional fish roe products from Europe, Asia, and the Middle East, where fish roe is frequently consumed. This book also discusses the sensory and safety attributes of fish roe and will be a comprehensive reference for food scientists, chemists, food process engineers, developers, researchers, and students in the field of seafood science.
Plant Fibers, their Composites, and Applications provides a systematic and comprehensive account of recent research into plant fibers, including the synthesis of plant fiber reinforced polymer composites, characterization techniques, and a broad spectrum of applications. Plant fibers have generated great interest among material scientists due to their characteristics, which include availability, low cost, biodegradability, easy processability, excellent thermo-mechanical properties, low acoustic properties. They have been proven to be excellent replacements for synthetic fibers and have found applications in advanced polymer composites. Coverage includes every stage of working with plant fibers, including synthesis, processing, characterization, applications, recycling, and life cycle assessment of plant fibers and their composites. Drawing on work from leading researchers in industry, academia, government and private research institutions across the globe, this is a definitive one-stop reference for anyone working with plant fibers.
Digital Manufacturing Technology for Sustainable Anthropometric Apparel is a thorough and practical examination of the state-of-the-art in anthropometric apparel manufacturing technology. The scale of the textiles industry, in economic as well as environmental terms, is so significant that new technologies and techniques that deliver improvements are of great global interest. Consumer preferences and government regulations are causing apparel manufacturers to prioritize sustainable practices, and at a time of unprecedented technological evolution and competitive pressure, integrating these measures with other priorities is a key challenge. By combining the expertise of contributors from the worlds of technology change management and technical textiles engineering, this book provides a unique interdisciplinary resource for organizational as well as technical implementation. Newly developed Industry 4.0 technologies are addressed, along with the latest data collection and analysis methods.
Biomass Processes and Chemicals is written to assist the reader in understanding the options available for the production of chemicals from biomass. Petroleum-based and natural gas-based chemicals are well-established products that have served industry and consumers for more than one hundred years. However, time is running out and natural gas and petroleum are now being depleted. Thus, the need for alternative technologies to produce chemicals is necessary. Chemicals produced from sources are now coming into place for the establishment of a chemicals-from-biomass industry, hence this book covers these advancements.
Advances in Oil-Water Separation: A Complete Guide for Physical, Chemical, and Biochemical Processes discusses a broad variety of chemical, physical and biochemical processes, including skimming, membrane separation, adsorption, onsite chemical reactions, burning and usage of suitable microbial strains for onsite degradation of oil. It critically reviews all current developments in oil-water separation processes and technologies, identifies gaps and illuminates the scope for future research and development in the field. This book provides researchers, engineers and environmental professionals working in oil recovery and storage with solutions for disposal of waste oil and separation of oil from water in a sustainable, environmentally-friendly way. As the book provides a complete state-of-art overview on oil-water separation technologies, it will also ease literature searches on oil-water separation technologies.
Advances in Food and Nutrition Research, Volume 99 highlights new advances in the field, with this updated volume presenting interesting chapters on a variety of topics, including Personalizing bakery products using 3D food printing, Dietary fiber in bakery products: source, processing, and function, The realm of plant proteins with focus on their application in developing new bakery products, Guiding the formulation of baked goods for the elderly population through food oral processing: challenges and opportunities, Gluten free bakery products: Ingredients and processes, Enhancing health benefits of bakery products using phytochemicals, Sugar, salt and fat reduction of bakery products, and more.
Hydrometallurgy: Theory provides the necessary fundamental background to the multidisciplinary field of hydrometallurgy, presenting the tools needed to utilize the theory to quantitatively describe, model and control the unit operations used in hydrometallurgical plants. The book describes the development and operation of processes utilizing hydrometallurgical operations, making it a valuable resource and reference for researchers, academics, students and industry professionals. It focuses on quantitative problem-solving with many worked examples and focused problems based on Nicol's many years of experience in teaching hydrometallurgy to students, researchers and industry professionals.
The Science and Technology of Flexible Packaging: Multilayer Films from Resin and Process to End Use, Second Edition provides a comprehensive guide on plastic films in flexible packaging, covering scientific principles, materials properties, processes and end use considerations. Sections discuss the science of multilayer films in a concise and impactful way, presenting the fundamental understanding required to improve product design, material selection and processes. In addition, the book includes information on why one material is favored over another and how film or coating affects material properties. Descriptions and analysis of key properties of packaging films are provided from engineering and scientific perspectives. With essential scientific insights, best practice techniques, environmental sustainability information and key principles of structure design, this book provides information aids in material selection and processing, how to shorten development times and deliver stronger products, and ways to enable engineers and scientists to deliver superior products with reduced development time and cost.
Carbon dioxide (CO2) capture and conversion to value added products, such as chemicals, polymers, and carbon-based fuels represents a promising approach to transform a potential threat to the environment into a value-added product for long term sustainability. Emerging Carbon Capture Technologies: Towards a Sustainable Future provides a multidisciplinary view of the research that is being carried out in this field, covering materials and processes for CO2 capture and utilization and including a broad discussion of the impact of novel technologies in carbon capture on the energy landscape, society and climate. Of interest to students, researchers and professionals in industries related to greenhouse gas mitigation, post-combustion CO2 capture processes, coal-fired power plants, environmental sustainability, green solvents, green technologies, and the utilization of clean energy for environmental protection, this book covers both the experimental and theoretical aspects of novel materials and process development providing a holistic approach toward a sustainable energy future.
Multiple Biological Activities of Unconventional Seed Oils brings detailed knowledge concerning the biological properties of oils (antioxidant, antimicrobial, antidiabetic, antitumor, anti-inflammatory, etc.), the content of individual substances with health-promoting properties, methods for biological properties assay, the influence of raw material quality and technological processes on the quality of oils, and possible raw materials and oil contaminants with adverse health effects. The book's chapters also highlight the unique properties of new oils, along with their biological activities. Less than a decade ago, the vegetable oils on grocery store shelves were derived from conventional oil seeds e.g., cotton, groundnut, sesame, corn sunflower and soybean. However, as consumers began to understand how fat intake affects overall health, researchers, plant growers and food manufacturers started to produce oils from unconventional sources. This book highlights what we've learned in the process.
Heterogeneous Catalysis: Materials and Applications focuses on heterogeneous catalysis applied to the elimination of atmospheric pollutants as an alternative solution for producing clean energy and the valorization of chemical products. The book helps users understand the properties of catalytic materials and catalysis phenomena governing electrocatalytic/catalytic reactions, and - more specifically - the study of surface and interface chemistry. By clustering knowledge in these fields, the book makes information available to both the academic and industrial communities. Further, it shows how heterogeneous catalysis applications can be used to solve environmental problems and convert energy through electrocatalytic reactions and chemical valorization. Sections cover nanomaterials for heterogeneous catalysis, heterogeneous catalysis mechanisms, SOX adsorption, greenhouse gases conversion, reforming reactions for hydrogen production, valorization of hydrogen energy, energy conversion and biomass valorization.
Electrochemical Phenomena in the Cathode Impedance Spectrum of PEM Fuel Cells: Fundamentals, Modelling, and Applications establishes how the electrochemical and diffusion mechanisms of a polymer electrolyte membrane fuel cell (PEMFC) are related to electrochemical impedance spectroscopy (EIS) measurements using physics-based impedance models derived from fundamental electrode and diffusion theories. The contribution of the different phenomena occurring at the different layers comprising the cathode on the impedance response of the PEMFC is revealed through EIS-modelling analysis. The relation between EIS measurements and polarisation curves representing the performance of PEMFCs is established. Insight is gained into how the EIS response of the PEMFC changes at different operating conditions e.g. relative humidity, load demand, gas reactant stoichiometry and temperature using physics-based impedance models. The application of impedance models with EIS measurements carried out in the individual cells comprising a PEMFC stack is demonstrated, while recent modelling approaches and other impedance models reported in the literature to represent the EIS response of the PEMFC are also considered and discussed.
Graphene Oxide-Metal Oxide and other Graphene Oxide-Based Composites in Photocatalysis and Electrocatalysis reflects on recent progress and challenges in graphene-metal oxide composites. The book reviews synthetic strategies, characterization methods and applications in photocatalysis and electrocatalysis. Graphene-metal oxides, graphene-novel metals and other composites intended for sustainable energy production, energy storage, and environmental development such as H2 production, CO2 reduction, pollutant removal, supercapacitors and lithium ion batteries are covered. Overall, this book presents a comprehensive, systematic, and up-to-date summary on graphene oxide-based materials. Graphene oxide and related composite materials bring new perspectives and prospects to both photocatalysts and electrocatalysts. The collective and synergistic effect between graphene oxide and metal oxide are manifold. The significance of the relationship among these groups of materials, their structures and performance is emphasized.
Conjugated Polymers for Next-Generation Applications, Volume One: Synthesis, Properties and Optoelectrochemical Devices describes the synthesis and characterization of varied conjugated polymeric materials and their key applications, including active electrode materials for electrochemical capacitors and lithium-ion batteries, along with new ideas of functional materials for next-generation high-energy batteries, a discussion of common design procedures, and the pros and cons of conjugated polymers for certain applications. The book's emphasis lies in the underlying electronic properties of conjugated polymers, their characterization and analysis, and the evaluation of their effectiveness for utilization in energy and electronics applications. This book is ideal for researchers and practitioners in the area of materials science, chemistry and chemical engineering.
Green Sustainable Process for Chemical and Environmental Engineering and Science, the latest release in the Green Composites: Preparation, Properties and Allied Applications series, deals with the most promising aspects of green composites. The book presents in-depth and updated literature related to the manufacturing of green composites and their properties and discusses special features of green composites and their applications in daily life. All green composites covered in this work are polymeric and of bio-origin. The book also provides industrial applications of green composites. Topics covered include the use of green composites, vegetable packing, foam, blends, rubber, solar cells, adhesives and 3D printing.
Conjugated Polymers for Next-Generation Applications, Volume Two: Energy Storage Devices describes the synthesis and characterization of varied conjugated polymeric materials and their key applications, including active electrode materials for electrochemical capacitors and lithium-ion batteries, along with new ideas of functional materials for next-generation high-energy batteries, a discussion of common design procedures, and the pros and cons of conjugated polymers for certain applications. The book's emphasis lies in the underlying electronic properties of conjugated polymers, their characterization and analysis, and the evaluation of their effectiveness for utilization in energy and electronics applications. This book is ideal for researchers and practitioners in the area of materials science, chemistry and chemical engineering. |
You may like...
|