![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Integral equations
This contributed volume contains a collection of articles on state-of-the-art developments on the construction of theoretical integral techniques and their application to specific problems in science and engineering. Written by internationally recognized researchers, the chapters in this book are based on talks given at the Thirteenth International Conference on Integral Methods in Science and Engineering, held July 21-25, 2014, in Karlsruhe, Germany. A broad range of topics is addressed, from problems of existence and uniqueness for singular integral equations on domain boundaries to numerical integration via finite and boundary elements, conservation laws, hybrid methods, and other quadrature-related approaches. This collection will be of interest to researchers in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students in these disciplines and other professionals for whom integration is an essential tool.
This monograph presents a rigorous mathematical introduction to optimal transport as a variational problem, its use in modeling various phenomena, and its connections with partial differential equations. Its main goal is to provide the reader with the techniques necessary to understand the current research in optimal transport and the tools which are most useful for its applications. Full proofs are used to illustrate mathematical concepts and each chapter includes a section that discusses applications of optimal transport to various areas, such as economics, finance, potential games, image processing and fluid dynamics. Several topics are covered that have never been previously in books on this subject, such as the Knothe transport, the properties of functionals on measures, the Dacorogna-Moser flow, the formulation through minimal flows with prescribed divergence formulation, the case of the supremal cost, and the most classical numerical methods. Graduate students and researchers in both pure and applied mathematics interested in the problems and applications of optimal transport will find this to be an invaluable resource.
This textbook, based on three series of lectures held by the author at the University of Strasbourg, presents functional analysis in a non-traditional way by generalizing elementary theorems of plane geometry to spaces of arbitrary dimension. This approach leads naturally to the basic notions and theorems. Most results are illustrated by the small p spaces. The Lebesgue integral, meanwhile, is treated via the direct approach of Frigyes Riesz, whose constructive definition of measurable functions leads to optimal, clear-cut versions of the classical theorems of Fubini-Tonelli and Radon-Nikodym. Lectures on Functional Analysis and the Lebesgue Integral presents the most important topics for students, with short, elegant proofs. The exposition style follows the Hungarian mathematical tradition of Paul Erdos and others. The order of the first two parts, functional analysis and the Lebesgue integral, may be reversed. In the third and final part they are combined to study various spaces of continuous and integrable functions. Several beautiful, but almost forgotten, classical theorems are also included. Both undergraduate and graduate students in pure and applied mathematics, physics and engineering will find this textbook useful. Only basic topological notions and results are used and various simple but pertinent examples and exercises illustrate the usefulness and optimality of most theorems. Many of these examples are new or difficult to localize in the literature, and the original sources of most notions and results are indicated to help the reader understand the genesis and development of the field.
Advances in science and technology are driven by the development of rigorous mathematical foundations for the study of both theoretical and experimental models. With certain methodological variations, this type of study always comes down to the application of analytic or computational integration procedures, making such tools indispensible. With a wealth of cutting-edge research in the field, Integral Methods in Science and Engineering: Progress in Numerical and Analytic Techniques provides a detailed portrait of both the construction of theoretical integral techniques and their application to specific problems in science and engineering. The chapters in this volume are based on talks given by well-known researchers at the Twelfth International Conference on Integral Methods in Science and Engineering, July 23-27, 2012, in Porto Alegre, Brazil. They address a broad range of topics, from problems of existence and uniqueness for singular integral equations on domain boundaries to numerical integration via finite and boundary elements, conservation laws, hybrid methods, and other quadrature-related approaches. The contributing authors bring their expertise to bear on a number of topical problems that have to date resisted solution, thereby offering help and guidance to fellow professionals worldwide. Integral Methods in Science and Engineering: Progress in Numerical and Analytic Techniques will be a valuable resource for researchers in applied mathematics, physics, and mechanical and electrical engineering, for graduate students in these disciplines, and for various other professionals who use integration as an essential tool in their work.
This monograph provides a state-of-the-art, self-contained account on the effectiveness of the method of boundary layer potentials in the study of elliptic boundary value problems with boundary data in a multitude of function spaces. Many significant new results are explored in detail, with complete proofs, emphasizing and elaborating on the link between the geometric measure-theoretic features of an underlying surface and the functional analytic properties of singular integral operators defined on it. Graduate students, researchers, and professionals interested in a modern account of the topic of singular integral operators and boundary value problems - as well as those more generally interested in harmonic analysis, PDEs, and geometric analysis - will find this text to be a valuable addition to the mathematical literature.
The Lebesgue integral is an essential tool in the fields of analysis and stochastics and for this reason, in many areas where mathematics is applied. This textbook is a concise, lecture-tested introduction to measure and integration theory. It addresses the important topics of this theory and presents additional results which establish connections to other areas of mathematics. The arrangement of the material should allow the adoption of this textbook in differently composed Bachelor programmes.
Intended as a self-contained introduction to measure theory, this textbook also includes a comprehensive treatment of integration on locally compact Hausdorff spaces, the analytic and Borel subsets of Polish spaces, and Haar measures on locally compact groups. This second edition includes a chapter on measure-theoretic probability theory, plus brief treatments of the Banach-Tarski paradox, the Henstock-Kurzweil integral, the Daniell integral, and the existence of liftings. Measure Theory provides a solid background for study in both functional analysis and probability theory and is an excellent resource for advanced undergraduate and graduate students in mathematics. The prerequisites for this book are basic courses in point-set topology and in analysis, and the appendices present a thorough review of essential background material.
This expanded second edition presents the fundamentals and touchstone results of real analysis in full rigor, but in a style that requires little prior familiarity with proofs or mathematical language. The text is a comprehensive and largely self-contained introduction to the theory of real-valued functions of a real variable. The chapters on Lebesgue measure and integral have been rewritten entirely and greatly improved. They now contain Lebesgue's differentiation theorem as well as his versions of the Fundamental Theorem(s) of Calculus. With expanded chapters, additional problems, and an expansive solutions manual, Basic Real Analysis, Second Edition is ideal for senior undergraduates and first-year graduate students, both as a classroom text and a self-study guide. Reviews of first edition: The book is a clear and well-structured introduction to real analysis aimed at senior undergraduate and beginning graduate students. The prerequisites are few, but a certain mathematical sophistication is required. ... The text contains carefully worked out examples which contribute motivating and helping to understand the theory. There is also an excellent selection of exercises within the text and problem sections at the end of each chapter. In fact, this textbook can serve as a source of examples and exercises in real analysis. -Zentralblatt MATH The quality of the exposition is good: strong and complete versions of theorems are preferred, and the material is organised so that all the proofs are of easily manageable length; motivational comments are helpful, and there are plenty of illustrative examples. The reader is strongly encouraged to learn by doing: exercises are sprinkled liberally throughout the text and each chapter ends with a set of problems, about 650 in all, some of which are of considerable intrinsic interest. -Mathematical Reviews [This text] introduces upper-division undergraduate or first-year graduate students to real analysis.... Problems and exercises abound; an appendix constructs the reals as the Cauchy (sequential) completion of the rationals; references are copious and judiciously chosen; and a detailed index brings up the rear. -CHOICE Reviews
The purpose of the volume is to provide a support textbook for a second lecture course on Mathematical Analysis. The contents are organised to suit, in particular, students of Engineering, Computer Science and Physics, all areas in which mathematical tools play a crucial role. The basic notions and methods concerning integral and differential calculus for multivariable functions, series of functions and ordinary differential equations are presented in a manner that elicits critical reading and prompts a hands-on approach to concrete applications. The pedagogical layout echoes the one used in the companion text Mathematical Analysis I. The book's structure has a specifically-designed modular nature, which allows for great flexibility in the preparation of a lecture course on Mathematical Analysis. The style privileges clarity in the exposition and a linear progression through the theory. The material is organised on two levels. The first, reflected in this book, allows students to grasp the essential ideas, familiarise with the corresponding key techniques and find the proofs of the main results. The second level enables the strongly motivated reader to explore further into the subject, by studying also the material contained in the appendices. Definitions are enriched by many examples, which illustrate the properties discussed. A host of solved exercises complete the text, at least half of which guide the reader to the solution. This new edition features additional material with the aim of matching the widest range of educational choices for a second course of Mathematical Analysis.
Provides a more cohesive and sharply focused treatment of fundamental concepts and theoretical background material, with particular attention given to better delineating connections to varying applications Exposition driven by additional examples and exercises
This collection of Heinz Koenig's publications connects to his book of 1997 "Measure and Integration" and presents significant developments in the subject from then up to the present day. The result is a consistent new version of measure theory, including selected applications. The basic step is the introduction of the inner * (bullet) and outer * (bullet) premeasures and their extension to unique maximal measures. New "envelopes" for the initial set function (to replace the traditional Caratheodory outer measures) have been created, which lead to much simpler and more explicit treatment. In view of these new concepts, the main results are unmatched in scope and plainness, as well as in explicitness. Important examples are the formation of products, a unified Daniell-Stone-Riesz representation theorem, and projective limits. Further to the contributions in this volume, after 2011 Heinz Koenig published two more articles that round up his work: On the marginals of probability contents on lattices (Mathematika 58, No. 2, 319-323, 2012), and Measure and integration: the basic extension and representation theorems in terms of new inner and outer envelopes (Indag. Math., New Ser. 25, No. 2, 305-314, 2014).
Laplace transforms continue to be a very important tool for the engineer, physicist and applied mathematician. They are also now useful to financial, economic and biological modellers as these disciplines become more quantitative. Any problem that has underlying linearity and with solution based on initial values can be expressed as an appropriate differential equation and hence be solved using Laplace transforms. In this book, there is a strong emphasis on application with the necessary mathematical grounding. There are plenty of worked examples with all solutions provided. This enlarged new edition includes generalised Fourier series and a completely new chapter on wavelets. Only knowledge of elementary trigonometry and calculus are required as prerequisites. "An Introduction to Laplace Transforms and Fourier Series" will be useful for second and third year undergraduate students in engineering, physics or mathematics, as well as for graduates in any discipline such as financial mathematics, econometrics and biological modelling requiring techniques for solving initial value problems.
This book provides the knowledge of the newly-established supertrigonometric and superhyperbolic functions with the special functions such as Mittag-Leffler, Wiman, Prabhakar, Miller-Ross, Rabotnov, Lorenzo-Hartley, Sonine, Wright and Kohlrausch-Williams-Watts functions, Gauss hypergeometric series and Clausen hypergeometric series. The special functions can be considered to represent a great many of the real-world phenomena in mathematical physics, engineering and other applied sciences. The audience benefits of new and original information and references in the areas of the special functions applied to model the complex problems with the power-law behaviors. The results are important and interesting for scientists and engineers to represent the complex phenomena arising in applied sciences therefore graduate students and researchers in mathematics, physics and engineering might find this book appealing.
This volume is part of collection of contributions devoted to analytical and experimental techniques of dynamical systems, presented at the 15th International Conference "Dynamical Systems: Theory and Applications", held in Lodz, Poland on December 2-5, 2019. The wide selection of material has been divided into three volumes, each focusing on a different field of applications of dynamical systems. The broadly outlined focus of both the conference and these books includes bifurcations and chaos in dynamical systems, asymptotic methods in nonlinear dynamics, dynamics in life sciences and bioengineering, original numerical methods of vibration analysis, control in dynamical systems, optimization problems in applied sciences, stability of dynamical systems, experimental and industrial studies, vibrations of lumped and continuous systems, non-smooth systems, engineering systems and differential equations, mathematical approaches to dynamical systems, and mechatronics.
This text is an introduction to the modern theory and applications of probability and stochastics. The style and coverage is geared towards the theory of stochastic processes, but with some attention to the applications. In many instances the gist of the problem is introduced in practical, everyday language and then is made precise in mathematical form. The first four chapters are on probability theory: measure and integration, probability spaces, conditional expectations, and the classical limit theorems. There follows chapters on martingales, Poisson random measures, Levy Processes, Brownian motion, and Markov Processes. Special attention is paid to Poisson random measures and their roles in regulating the excursions of Brownian motion and the jumps of Levy and Markov processes. Each chapter has a large number of varied examples and exercises. The bookis based on the author's lecture notes in courses offered over the years at Princeton University. These courses attracted graduate students from engineering, economics, physics, computer sciences, and mathematics. Erhan Cinlar has received many awards for excellence in teaching, including the President's Award for Distinguished Teaching at Princeton University. His research interests include theories of Markov processes, point processes, stochastic calculus, and stochastic flows. The book is full of insights and observations that only a lifetime researcher in probability can have, all told in a lucid yet precise style."
The field of variable exponent function spaces has witnessed an explosive growth in recent years. The standard reference article for basic properties is already 20 years old. Thus this self-contained monograph collecting all the basic properties of variable exponent Lebesgue and Sobolev spaces is timely and provides a much-needed accessible reference work utilizing consistent notation and terminology. Many results are also provided with new and improved proofs. The book also presents a number of applications to PDE and fluid dynamics.
After the pioneering works by Robbins {1944, 1945) and Choquet (1955), the notation of a set-valued random variable (called a random closed set in literatures) was systematically introduced by Kendall {1974) and Matheron {1975). It is well known that the theory of set-valued random variables is a natural extension of that of general real-valued random variables or random vectors. However, owing to the topological structure of the space of closed sets and special features of set-theoretic operations ( cf. Beer [27]), set-valued random variables have many special properties. This gives new meanings for the classical probability theory. As a result of the development in this area in the past more than 30 years, the theory of set-valued random variables with many applications has become one of new and active branches in probability theory. In practice also, we are often faced with random experiments whose outcomes are not numbers but are expressed in inexact linguistic terms.
This is a graduate level textbook on measure theory and probability theory. It presents the main concepts and results in measure theory and probability theory in a simple and easy-to-understand way. It further provides heuristic explanations behind the theory to help students see the big picture. The book can be used as a text for a two semester sequence of courses in measure theory and probability theory, with an option to include supplemental material on stochastic processes and special topics. Prerequisites are kept to the minimal level and the book is intended primarily for first year Ph.D. students in mathematics and statistics.
"Approximation by Multivariate Singular Integrals "is the first monograph to illustrate the approximation of multivariate singular integrals to the identity-unit operator. The basic approximation properties of the general multivariate singular integral operators is presented quantitatively, particularly special cases such as the multivariate Picard, Gauss-Weierstrass, Poisson-Cauchy and trigonometric singular integral operators are examined thoroughly. This book studies the rate of convergence of these operators to the unit operator as well as the related simultaneous approximation. The last chapter, which includes many examples, presents a related Korovkin type approximation theorem for functions of two variables. Relevant background information and motivation is included in this exposition, and as a result this book can be used as supplementary text for several advanced courses. The results presented apply to many areas of pure and applied mathematics, such a mathematical analysis, probability, statistics and partial differential equations. This book is appropriate for researchers and selected seminars at the graduate level. "
This comprehensive treatment of multivariable calculus focuses on the numerous tools that MATLAB (R) brings to the subject, as it presents introductions to geometry, mathematical physics, and kinematics. Covering simple calculations with MATLAB (R), relevant plots, integration, and optimization, the numerous problem sets encourage practice with newly learned skills that cultivate the reader's understanding of the material. Significant examples illustrate each topic, and fundamental physical applications such as Kepler's Law, electromagnetism, fluid flow, and energy estimation are brought to prominent position. Perfect for use as a supplement to any standard multivariable calculus text, a "mathematical methods in physics or engineering" class, for independent study, or even as the class text in an "honors" multivariable calculus course, this textbook will appeal to mathematics, engineering, and physical science students. MATLAB (R) is tightly integrated into every portion of this book, and its graphical capabilities are used to present vibrant pictures of curves and surfaces. Readers benefit from the deep connections made between mathematics and science while learning more about the intrinsic geometry of curves and surfaces. With serious yet elementary explanation of various numerical algorithms, this textbook enlivens the teaching of multivariable calculus and mathematical methods courses for scientists and engineers.
This volume contains papers written by participants of the 6th Workshop on - erator Theory in Krein Spaces and Operator Polynomials, which was held at the Technische Universit. at Berlin, Germany, December 14 to 17, 2006. This workshop was attended by 67 participants from 14 countries. The lectures covered topics from spectral and perturbation theory of linear operators in inner product spaces and from operator polynomials. They included the theory of generalized Nevanlinna and Schur functions, di?erential operators, singular perturbations, de Branges spaces, scattering problems, block numerical ranges, nonnegative matrices and relations. All these topics are re?ected in the present volume. Besides, it contains an after dinner speech from an earlier wo- shop, which we think may be of interest for the reader, as well as a speech on the occasion of the retirement of Peter Jonas. It is a pleasure to acknowledge the substantial ?nancial support received from the - Deutsche Forschungsgemeinschaft (DFG), - Berlin Mathematical School (BMS), - DFG-Forschungszentrum MATHEON "Mathematik fur .. Schlussel- .. technologien", - Institute of Mathematics of the Technische Universit. at Berlin. WewouldalsoliketothankPetraGrimbergerforhergreathelpintheorganisation. Without her assistance the workshop might not have taken place.
From the reviews: "... My general impression is of a particularly nice book, with a well-balanced bibliography, recommended!"Mededelingen van Het Wiskundig Genootschap, 1995"... The authors offer here an up to date guide to the topic and its main applications, including a number of new results. It is very convenient for the reader, a carefully prepared and extensive bibliography ... makes it easy to find the necessary details when needed. The books (EMS 6 and EMS 39) describe a lot of interesting topics. ... Both volumes are a very valuable addition to the library of any mathematician or physicist interested in modern mathematical analysis."European Mathematical Society Newsletter, 1994
Introduction to integration provides a unified account of integration theory, giving a practical guide to the Lebesgue integral and its uses, with a wealth of illustrative examples and exercises. The book begins with a simplified Lebesgue-style integral (in lieu of the more traditional Riemann integral), intended for a first course in integration. This suffices for elementary applications, and serves as an introduction to the core of the book. The final chapters present selected applications, mostly drawn from Fourier analysis. The emphasis throughout is on integrable functions rather than on measure. The book is designed primarily as an undergraduate or introductory graduate textbook. It is similar in style and level to Priestley's Introduction to complex analysis, for which it provides a companion volume, and is aimed at both pure and applied mathematicians. Prerequisites are the rudiments of integral calculus and a first course in real analysis.
This book develops a new theory of multi-parameter singular integrals associated with Carnot-Caratheodory balls. Brian Street first details the classical theory of Calderon-Zygmund singular integrals and applications to linear partial differential equations. He then outlines the theory of multi-parameter Carnot-Caratheodory geometry, where the main tool is a quantitative version of the classical theorem of Frobenius. Street then gives several examples of multi-parameter singular integrals arising naturally in various problems. The final chapter of the book develops a general theory of singular integrals that generalizes and unifies these examples. This is one of the first general theories of multi-parameter singular integrals that goes beyond the product theory of singular integrals and their analogs. "Multi-parameter Singular Integrals" will interest graduate students and researchers working in singular integrals and related fields."
1. Historical Remarks Convex Integration theory, ?rst introduced by M. Gromov [17], is one of three general methods in immersion-theoretic topology for solving a broad range of problems in geometry and topology. The other methods are: (i) Removal of Singularities, introduced by M. Gromov and Y. Eliashberg [8]; (ii) the covering homotopy method which, following M. Gromov's thesis [16], is also referred to as the method of sheaves. The covering homotopy method is due originally to S. Smale [36] who proved a crucial covering homotopy result in order to solve the classi?cation problem for immersions of spheres in Euclidean space. These general methods are not linearly related in the sense that succ- sive methods subsumed the previous methods. Each method has its own distinct foundation, based on an independent geometrical or analytical insight. Con- quently, each method has a range of applications to problems in topology that are best suited to its particular insight. For example, a distinguishing feature of ConvexIntegrationtheoryisthatitappliestosolveclosed relationsinjetspaces, including certain general classes of underdetermined non-linear systems of par- 1 tial di?erential equations. As a case of interest, the Nash-Kuiper C -isometric immersion theorem can be reformulated and proved using Convex Integration theory (cf. Gromov [18]). No such results on closed relations in jet spaces can be proved by means of the other two methods. On the other hand, many classical results in immersion-theoretic topology, such as the classi?cation of immersions, are provable by all three methods. |
You may like...
The Method of Rigged Spaces in Singular…
Volodymyr Koshmanenko, Mykola Dudkin
Hardcover
R3,681
Discovery Miles 36 810
Integral Equations with Difference…
Lev A. Sakhnovich
Hardcover
Signal and Image Representation in…
Yehoshua Zeevi, Ronald Coifman
Hardcover
R1,702
Discovery Miles 17 020
Generalized Radon Transforms And Imaging…
Gaik Ambartsoumian
Hardcover
R2,144
Discovery Miles 21 440
Calculus for Engineering Students…
Jesus Martin Vaquero, Michael Carr, …
Paperback
R2,162
Discovery Miles 21 620
Integral Methods in Science and…
Christian Constanda, Matteo Dalla Riva, …
Hardcover
R3,441
Discovery Miles 34 410
Local Fractional Integral Transforms and…
Xiaojun Yang, Dumitru Baleanu, …
Hardcover
R1,806
Discovery Miles 18 060
|