Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Integral equations
This is a collection of research-oriented monographs, reports, and notes arising from lectures and seminars on the Weil representation, the Maslov index, and the Theta series. It is good contribution to the international scientific community, particularly for researchers and graduate students in the field.
Partial table of contents: Preliminary Remarks on Analytical Geometry and Vector Analysis: Rectangular Coordinates and Vectors, Affine Transformations and the Multiplication of Determinants. Functions of Several Variables and Their Derivatives: Continuity, The Total Differential of a Function and Its Geometrical Meaning. Developments and Applications of the Differential Calculus: Implicit Functions, Maxima and Minima. Multiple Integrals: Transformation of Multiple Integrals, Improper Integrals. Integration over Regions in Several Dimensions: Surface Integrals, Stokes's Theorem in Space. Differential Equations: Examples on the Mechanics of a Particle, Linear Differential Equations. Calculus of Variations: Euler's Differential Equation in the Simplest Case, Generalizations. Functions of a Complex Variable: The Integration of Analytic Functions, Cauchy's Formula and Its Applications. Appendixes. Index.
This book provides a self-contained introduction to convex geometry in Euclidean space. After covering the basic concepts and results, it develops Brunn-Minkowski theory, with an exposition of mixed volumes, the Brunn-Minkowski inequality, and some of its consequences, including the isoperimetric inequality. Further central topics are then treated, such as surface area measures, projection functions, zonoids, and geometric valuations. Finally, an introduction to integral-geometric formulas in Euclidean space is provided. The numerous exercises and the supplementary material at the end of each section form an essential part of the book. Convexity is an elementary and natural concept. It plays a key role in many mathematical fields, including functional analysis, optimization, probability theory, and stochastic geometry. Paving the way to the more advanced and specialized literature, the material will be accessible to students in the third year and can be covered in one semester.
This popular textbook, now in a revised and expanded third edition, presents a comprehensive course in modern probability theory.Probability plays an increasingly important role not only in mathematics, but also in physics, biology, finance and computer science, helping to understand phenomena such as magnetism, genetic diversity and market volatility, and also to construct efficient algorithms. Starting with the very basics, this textbook covers a wide variety of topics in probability, including many not usually found in introductory books, such as: limit theorems for sums of random variables martingales percolation Markov chains and electrical networks construction of stochastic processes Poisson point process and infinite divisibility large deviation principles and statistical physics Brownian motion stochastic integrals and stochastic differential equations. The presentation is self-contained and mathematically rigorous, with the material on probability theory interspersed with chapters on measure theory to better illustrate the power of abstract concepts. This third edition has been carefully extended and includes new features, such as concise summaries at the end of each section and additional questions to encourage self-reflection, as well as updates to the figures and computer simulations. With a wealth of examples and more than 290 exercises, as well as biographical details of key mathematicians, it will be of use to students and researchers in mathematics, statistics, physics, computer science, economics and biology.
T his book provides an introduction to recent developments in the theory of generalized harmonic analysis and its applications. It is well known that convolutions, differential operators and diffusion processes are interconnected: the ordinary convolution commutes with the Laplacian, and the law of Brownian motion has a convolution semigroup property with respect to the ordinary convolution. Seeking to generalize this useful connection, and also motivated by its probabilistic applications, the book focuses on the following question: given a diffusion process Xt on a metric space E, can we construct a convolution-like operator * on the space of probability measures on E with respect to which the law of Xt has the *-convolution semigroup property? A detailed analysis highlights the connection between the construction of convolution-like structures and disciplines such as stochastic processes, ordinary and partial differential equations, spectral theory, special functions and integral transforms. The book will be valuable for graduate students and researchers interested in the intersections between harmonic analysis, probability theory and differential equations.
Line Integral Methods for Conservative Problems explains the numerical solution of differential equations within the framework of geometric integration, a branch of numerical analysis that devises numerical methods able to reproduce (in the discrete solution) relevant geometric properties of the continuous vector field. The book focuses on a large set of differential systems named conservative problems, particularly Hamiltonian systems. Assuming only basic knowledge of numerical quadrature and Runge-Kutta methods, this self-contained book begins with an introduction to the line integral methods. It describes numerous Hamiltonian problems encountered in a variety of applications and presents theoretical results concerning the main instance of line integral methods: the energy-conserving Runge-Kutta methods, also known as Hamiltonian boundary value methods (HBVMs). The authors go on to address the implementation of HBVMs in order to recover in the numerical solution what was expected from the theory. The book also covers the application of HBVMs to handle the numerical solution of Hamiltonian partial differential equations (PDEs) and explores extensions of the energy-conserving methods. With many examples of applications, this book provides an accessible guide to the subject yet gives you enough details to allow concrete use of the methods. MATLAB codes for implementing the methods are available online.
This textbook introduces readers to real analysis in one and n dimensions. It is divided into two parts: Part I explores real analysis in one variable, starting with key concepts such as the construction of the real number system, metric spaces, and real sequences and series. In turn, Part II addresses the multi-variable aspects of real analysis. Further, the book presents detailed, rigorous proofs of the implicit theorem for the vectorial case by applying the Banach fixed-point theorem and the differential forms concept to surfaces in Rn. It also provides a brief introduction to Riemannian geometry. With its rigorous, elegant proofs, this self-contained work is easy to read, making it suitable for undergraduate and beginning graduate students seeking a deeper understanding of real analysis and applications, and for all those looking for a well-founded, detailed approach to real analysis.
Going far beyond the standard texts, this book extensively covers boundary integral equation (BIE) formulations and the boundary element method (BEM). The first section introduces BIE formulations for potential and elasticity problems, following the modern regularization approach - the fundamental starting point for research in this field. Secondly, a clear description of BIE formulations for wave and elastodynamics problems, in both time and frequency domains is presented. Finally, recent research in the field, related to variational integral formulations, use of geometrical symmetry, shape sensitivity and fracture mechanics is summarised. Within the text a broad range of application areas, industrial as well as research related, are examined. These include:
This text, the first of two volumes, provides a comprehensive and self-contained introduction to a wide range of fundamental results from ergodic theory and geometric measure theory. Topics covered include: finite and infinite abstract ergodic theory, Young's towers, measure-theoretic Kolmogorov-Sinai entropy, thermodynamics formalism, geometric function theory, various kinds of conformal measures, conformal graph directed Markov systems and iterated functions systems, semi-local dynamics of analytic functions, and nice sets. Many examples are included, along with detailed explanations of essential concepts and full proofs, in what is sure to be an indispensable reference for both researchers and graduate students.
This text, the second of two volumes, builds on the foundational material on ergodic theory and geometric measure theory provided in Volume I, and applies all the techniques discussed to describe the beautiful and rich dynamics of elliptic functions. The text begins with an introduction to topological dynamics of transcendental meromorphic functions, before progressing to elliptic functions, discussing at length their classical properties, measurable dynamics and fractal geometry. The authors then look in depth at compactly non-recurrent elliptic functions. Much of this material is appearing for the first time in book or paper form. Both senior and junior researchers working in ergodic theory and dynamical systems will appreciate what is sure to be an indispensable reference.
Integrals and sums are not generally considered for evaluation using complex integration. This book proposes techniques that mainly use complex integration and are quite different from those in the existing texts. Such techniques, ostensibly taught in Complex Analysis courses to undergraduate students who have had two semesters of calculus, are usually limited to a very small set of problems. Few practitioners consider complex integration as a tool for computing difficult integrals. While there are a number of books on the market that provide tutorials on this subject, the existing texts in this field focus on real methods. Accordingly, this book offers an eye-opening experience for computation enthusiasts used to relying on clever substitutions and transformations to evaluate integrals and sums. The book is the result of nine years of providing solutions to difficult calculus problems on forums such as Math Stack Exchange or the author's website, residuetheorem.com. It serves to detail to the enthusiastic mathematics undergraduate, or the physics or engineering graduate student, the art and science of evaluating difficult integrals, sums, and products.
This volume is part of collection of contributions devoted to analytical and experimental techniques of dynamical systems, presented at the 15th International Conference "Dynamical Systems: Theory and Applications", held in Lodz, Poland on December 2-5, 2019. The wide selection of material has been divided into three volumes, each focusing on a different field of applications of dynamical systems. The broadly outlined focus of both the conference and these books includes bifurcations and chaos in dynamical systems, asymptotic methods in nonlinear dynamics, dynamics in life sciences and bioengineering, original numerical methods of vibration analysis, control in dynamical systems, optimization problems in applied sciences, stability of dynamical systems, experimental and industrial studies, vibrations of lumped and continuous systems, non-smooth systems, engineering systems and differential equations, mathematical approaches to dynamical systems, and mechatronics.
This volume is part of collection of contributions devoted to analytical and experimental techniques of dynamical systems, presented at the 15th International Conference "Dynamical Systems: Theory and Applications", held in Lodz, Poland on December 2-5, 2019. The wide selection of material has been divided into three volumes, each focusing on a different field of applications of dynamical systems. The broadly outlined focus of both the conference and these books includes bifurcations and chaos in dynamical systems, asymptotic methods in nonlinear dynamics, dynamics in life sciences and bioengineering, original numerical methods of vibration analysis, control in dynamical systems, optimization problems in applied sciences, stability of dynamical systems, experimental and industrial studies, vibrations of lumped and continuous systems, non-smooth systems, engineering systems and differential equations, mathematical approaches to dynamical systems, and mechatronics.
This book provides ideas for implementing Wolfram Mathematica to solve linear integral equations. The book introduces necessary theoretical information about exact and numerical methods of solving integral equations. Every method is supplied with a large number of detailed solutions in Wolfram Mathematica. In addition, the book includes tasks for individual study. This book is a supplement for students studying "Integral Equations". In addition, the structure of the book with individual assignments allows to use it as a base for various courses.
This volume is part of the collaboration agreement between Springer and the ISAAC society. This is the first in the two-volume series originating from the 2020 activities within the international scientific conference "Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis" (OTHA), Southern Federal University in Rostov-on-Don, Russia. This volume is focused on general harmonic analysis and its numerous applications. The two volumes cover new trends and advances in several very important fields of mathematics, developed intensively over the last decade. The relevance of this topic is related to the study of complex multiparameter objects required when considering operators and objects with variable parameters.
Differential and integral equations involve important mathematical
techniques, and as such will be encountered by mathematicians, and
physical and social scientists, in their undergraduate courses.
This text provides a clear, comprehensive guide to first- and
second-order ordinary and partial
This volume is part of the collaboration agreement between Springer and the ISAAC society. This is the second in the two-volume series originating from the 2020 activities within the international scientific conference "Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis" (OTHA), Southern Federal University, Rostov-on-Don, Russia. This volume focuses on mathematical methods and applications of probability and statistics in the context of general harmonic analysis and its numerous applications. The two volumes cover new trends and advances in several very important fields of mathematics, developed intensively over the last decade. The relevance of this topic is related to the study of complex multi-parameter objects required when considering operators and objects with variable parameters.
This work results from a selection of the contributions presented in the mini symposium "Applications of Multiresolution Analysis with "Wavelets", presented at the ICIAM 19, the International Congress on Industrial and Applied Mathematics held at Valencia, Spain, in July 2019. The presented developments and applications cover different areas, including filtering, signal analysis for damage detection, time series analysis, solutions to boundary value problems and fractional calculus. This bunch of examples highlights the importance of multiresolution analysis to face problems in several and varied disciplines. The book is addressed to researchers in the field.
Provides a more cohesive and sharply focused treatment of fundamental concepts and theoretical background material, with particular attention given to better delineating connections to varying applications Exposition driven by additional examples and exercises
The objective of this book is to construct a rigorous mathematical approach to linear hereditary problems of wave propagation theory and demonstrate the efficiency of mathematical theorems in hereditary mechanics. By using both real end complex Tauberian techniques for the Laplace transform, a classification of near-front asymptotics of solutions to considered equations is given-depending on the singularity character of the memory function. The book goes on to derive the description of the behavior of these solutions and demonstrates the importance of nonlinear Laplace transform in linear hereditary elasticity. This book is of undeniable value to researchers working in areas of mathematical physics and related fields. |
You may like...
Integral Equations with Difference…
Lev A. Sakhnovich
Hardcover
Generalized Radon Transforms And Imaging…
Gaik Ambartsoumian
Hardcover
R2,249
Discovery Miles 22 490
Positivity and its Applications…
Eder Kikianty, Mokhwetha Mabula, …
Hardcover
R5,233
Discovery Miles 52 330
Weighted Polynomial Approximation and…
Peter Junghanns, Giuseppe Mastroianni, …
Hardcover
R4,311
Discovery Miles 43 110
Operator Theory and Harmonic Analysis…
Alexey N. Karapetyants, Igor V. Pavlov, …
Hardcover
R5,497
Discovery Miles 54 970
One-dimensional Linear Singular Integral…
Israel Gohberg, Naum IA. Krupnick, …
Hardcover
R2,396
Discovery Miles 23 960
Schwarz Methods and Multilevel…
Ernst P. Stephan, Thanh Tran
Hardcover
R4,624
Discovery Miles 46 240
Operator Theory and Harmonic Analysis…
Alexey N. Karapetyants, Vladislav V. Kravchenko, …
Hardcover
R6,266
Discovery Miles 62 660
The Rademacher System in Function Spaces
Sergey V. Astashkin
Hardcover
R3,980
Discovery Miles 39 800
|