![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Integral equations
Noncommutative differential geometry is a new approach to classical geometry. It was originally used by Fields Medalist A. Connes in the theory of foliations, where it led to striking extensions of Atiyah-Singer index theory. It also may be applicable to hitherto unsolved geometric phenomena and physical experiments. However, noncommutative differential geometry was not well understood even among mathematicians. Therefore, an international symposium on commutative differential geometry and its applications to physics was held in Japan, in July 1999. Topics covered included: deformation problems, Poisson groupoids, operad theory, quantization problems, and D-branes. The meeting was attended by both mathematicians and physicists, which resulted in interesting discussions. This volume contains the refereed proceedings of this symposium. Providing a state of the art overview of research in these topics, this book is suitable as a source book for a seminar in noncommutative geometry and physics.
Real Analysis: Measures, Integrals and Applications is devoted to the basics of integration theory and its related topics. The main emphasis is made on the properties of the Lebesgue integral and various applications both classical and those rarely covered in literature. This book provides a detailed introduction to Lebesgue measure and integration as well as the classical results concerning integrals of multivariable functions. It examines the concept of the Hausdorff measure, the properties of the area on smooth and Lipschitz surfaces, the divergence formula, and Laplace's method for finding the asymptotic behavior of integrals. The general theory is then applied to harmonic analysis, geometry, and topology. Preliminaries are provided on probability theory, including the study of the Rademacher functions as a sequence of independent random variables. The book contains more than 600 examples and exercises. The reader who has mastered the first third of the book will be able to study other areas of mathematics that use integration, such as probability theory, statistics, functional analysis, partial probability theory, statistics, functional analysis, partial differential equations and others. Real Analysis: Measures, Integrals and Applications is intended for advanced undergraduate and graduate students in mathematics and physics. It assumes that the reader is familiar with basic linear algebra and differential calculus of functions of several variables.
In 1979, I edited Volume 18 in this series: Solution Methods for Integral Equations: Theory and Applications. Since that time, there has been an explosive growth in all aspects of the numerical solution of integral equations. By my estimate over 2000 papers on this subject have been published in the last decade, and more than 60 books on theory and applications have appeared. In particular, as can be seen in many of the chapters in this book, integral equation techniques are playing an increas ingly important role in the solution of many scientific and engineering problems. For instance, the boundary element method discussed by Atkinson in Chapter 1 is becoming an equal partner with finite element and finite difference techniques for solving many types of partial differential equations. Obviously, in one volume it would be impossible to present a complete picture of what has taken place in this area during the past ten years. Consequently, we have chosen a number of subjects in which significant advances have been made that we feel have not been covered in depth in other books. For instance, ten years ago the theory of the numerical solution of Cauchy singular equations was in its infancy. Today, as shown by Golberg and Elliott in Chapters 5 and 6, the theory of polynomial approximations is essentially complete, although many details of practical implementation remain to be worked out."
Laplace transforms continue to be a very important tool for the engineer, physicist and applied mathematician. They are also now useful to financial, economic and biological modellers as these disciplines become more quantitative. Any problem that has underlying linearity and with solution based on initial values can be expressed as an appropriate differential equation and hence be solved using Laplace transforms. In this book, there is a strong emphasis on application with the necessary mathematical grounding. There are plenty of worked examples with all solutions provided. This enlarged new edition includes generalised Fourier series and a completely new chapter on wavelets. Only knowledge of elementary trigonometry and calculus are required as prerequisites. "An Introduction to Laplace Transforms and Fourier Series" will be useful for second and third year undergraduate students in engineering, physics or mathematics, as well as for graduates in any discipline such as financial mathematics, econometrics and biological modelling requiring techniques for solving initial value problems.
Stochastic geometry, based on current developments in geometry, probability and measure theory, makes possible modeling of two- and three-dimensional random objects with interactions as they appear in the microstructure of materials, biological tissues, macroscopically in soil, geological sediments etc. In combination with spatial statistics it is used for the solution of practical problems such as the description of spatial arrangements and the estimation of object characteristics. A related field is stereology, which makes possible inference on the structures, based on lower-dimensional observations. Unfolding problems for particle systems and extremes of particle characteristics are studied. The reader can learn about current developments in stochastic geometry with mathematical rigor on one hand and find applications to real microstructure analysis in natural and material sciences on the other hand.
In volume I we developed the tools of "Multivalued Analysis. " In this volume we examine the applications. After all, the initial impetus for the development of the theory of set-valued functions came from its applications in areas such as control theory and mathematical economics. In fact, the needs of control theory, in particular the study of systems with a priori feedback, led to the systematic investigation of differential equations with a multi valued vector field (differential inclusions). For this reason, we start this volume with three chapters devoted to set-valued differential equations. However, in contrast to the existing books on the subject (i. e. J. -P. Aubin - A. Cellina: "Differential Inclusions," Springer-Verlag, 1983, and Deimling: "Multivalued Differential Equations," W. De Gruyter, 1992), here we focus on "Evolution Inclusions," which are evolution equations with multi valued terms. Evolution equations were raised to prominence with the development of the linear semigroup theory by Hille and Yosida initially, with subsequent im portant contributions by Kato, Phillips and Lions. This theory allowed a successful unified treatment of some apparently different classes of nonstationary linear par tial differential equations and linear functional equations. The needs of dealing with applied problems and the natural tendency to extend the linear theory to the nonlinear case led to the development of the nonlinear semigroup theory, which became a very effective tool in the analysis of broad classes of nonlinear evolution equations.
Since the publication of an article by G. DoETSCH in 1927 it has been known that the Laplace transform procedure is a reliable sub stitute for HEAVISIDE's operational calculus*. However, the Laplace transform procedure is unsatisfactory from several viewpoints (some of these will be mentioned in this preface); the most obvious defect: the procedure cannot be applied to functions of rapid growth (such as the 2 function tr-+-exp(t)). In 1949 JAN MIKUSINSKI indicated how the un necessary restrictions required by the Laplace transform can be avoided by a direct approach, thereby gaining in notational as well as conceptual simplicity; this approach is carefully described in MIKUSINSKI's textbook "Operational Calculus" [M 1]. The aims of the present book are the same as MIKUSINSKI's [M 1]: a direct approach requiring no un-necessary restrictions. The present operational calculus is essentially equivalent to the "calcul symbolique" of distributions having left-bounded support (see 6.52 below and pp. 171 to 180 of the textbook "Theorie des distributions" by LAURENT SCHWARTZ).
It is not the object of the author to present comprehensive cov erage of any particular integral transformation or of any particular development of generalized functions, for there are books available in which this is done. Rather, this consists more of an introductory survey in which various ideas are explored. The Laplace transforma tion is taken as the model type of an integral transformation and a number of its properties are developed; later, the Fourier transfor mation is introduced. The operational calculus of Mikusinski is pre sented as a method of introducing generalized functions associated with the Laplace transformation. The construction is analogous to the construction of the rational numbers from the integers. Further on, generalized functions associated with the problem of extension of the Fourier transformation are introduced. This construction is anal ogous to the construction of the reals from the rationals by means of Cauchy sequences. A chapter with sections on a variety of trans formations is adjoined. Necessary levels of sophistication start low in the first chapter, but they grow considerably in some sections of later chapters. Background needs are stated at the beginnings of each chapter. Many theorems are given without proofs, which seems appro priate for the goals in mind. A selection of references is included. Without showing many of the details of rigor it is hoped that a strong indication is given that a firm mathematical foundation does actu ally exist for such entities as the "Dirac delta-function.""
Many phenomena in engineering and mathematical physics can be modeled by means of boundary value problems for a certain elliptic differential operator in a given domain. When the differential operator under discussion is of second order a variety of tools are available for dealing with such problems, including boundary integral methods, variational methods, harmonic measure techniques, and methods based on classical harmonic analysis. When the differential operator is of higher-order (as is the case, e.g., with anisotropic plate bending when one deals with a fourth order operator) only a few options could be successfully implemented. In the 1970s Alberto Calderon, one of the founders of the modern theory of Singular Integral Operators, advocated the use of layer potentials for the treatment of higher-order elliptic boundary value problems. The present monograph represents the first systematic treatment based on this approach. This research monograph lays, for the first time, the mathematical foundation aimed at solving boundary value problems for higher-order elliptic operators in non-smooth domains using the layer potential method and addresses a comprehensive range of topics, dealing with elliptic boundary value problems in non-smooth domains including layer potentials, jump relations, non-tangential maximal function estimates, multi-traces and extensions, boundary value problems with data in Whitney-Lebesque spaces, Whitney-Besov spaces, Whitney-Sobolev- based Lebesgue spaces, Whitney-Triebel-Lizorkin spaces, Whitney-Sobolev-based Hardy spaces, Whitney-BMO and Whitney-VMO spaces."
"Concrete Functional Calculus" focuses primarily on differentiability of some nonlinear operators on functions or pairs of functions. This includes composition of two functions, and the product integral, taking a matrix- or operator-valued coefficient function into a solution of a system of linear differential equations with the given coefficients. In this book existence and uniqueness of solutions are proved under suitable assumptions for nonlinear integral equations with respect to possibly discontinuous functions having unbounded variation. Key features and topics: Extensive usage of p-variation of functions, and applications to stochastic processes. This work will serve as a thorough reference on its main topics for researchers and graduate students with a background in real analysis and, for Chapter 12, in probability."
This book gives a general definition of the (abstract) integral, using the Daniell method. A most welcome consequence of this approach is the fact that integration theory on Hausdorff topological spaces appears simply to be a special case of abstract integration theory. The most important tool for the development of the abstract theory is the theory of vector lattices which is presented here in great detail. Its consequent application not only yields new insight into integration theory, but also simplifies many proofs. For example, the space of real-valued measures on a delta-ring turns out to be an order complete vector lattice, which permits a coherent development of the theory and the elegant derivation of many classical and new results. The exercises occupy an important part of the volume. In addition to their usual role, some of them treat separate topics related to vector lattices and integration theory. Audience: This work will be of interest to graduate-level students and researchers with a background in real analysis, whose work involves (abstract) measure and integration, vector lattices, real functions of a real variable, probability theory and integral transforms.
This book deals with the constructive Weierstrassian approach to the theory of function spaces and various applications. The first chapter is devoted to a detailed study of quarkonial (subatomic) decompositions of functions and distributions on euclidean spaces, domains, manifolds and fractals. This approach combines the advantages of atomic and wavelet representations. It paves the way to sharp inequalities and embeddings in function spaces, spectral theory of fractal elliptic operators, and a regularity theory of some semi-linear equations. The book is self-contained, although some parts may be considered as a continuation of the author's book Fractals and Spectra. It is directed to mathematicians and (theoretical) physicists interested in the topics indicated and, in particular, how they are interrelated. - - - The book under review can be regarded as a continuation of [his book on "Fractals and spectra", 1997] (...) There are many sections named: comments, preparations, motivations, discussions and so on. These parts of the book seem to be very interesting and valuable. They help the reader to deal with the main course. (Mathematical Reviews)
The aim of this work is to initiate a systematic study of those properties of Banach space complexes that are stable under certain perturbations. A Banach space complex is essentially an object of the form 1 op-l oP +1 ... --+ XP- --+ XP --+ XP --+ ... , where p runs a finite or infiniteinterval ofintegers, XP are Banach spaces, and oP : Xp ..... Xp+1 are continuous linear operators such that OPOp-1 = 0 for all indices p. In particular, every continuous linear operator S : X ..... Y, where X, Yare Banach spaces, may be regarded as a complex: O ..... X ~ Y ..... O. The already existing Fredholm theory for linear operators suggested the possibility to extend its concepts and methods to the study of Banach space complexes. The basic stability properties valid for (semi-) Fredholm operators have their counterparts in the more general context of Banach space complexes. We have in mind especially the stability of the index (i.e., the extended Euler characteristic) under small or compact perturbations, but other related stability results can also be successfully extended. Banach (or Hilbert) space complexes have penetrated the functional analysis from at least two apparently disjoint directions. A first direction is related to the multivariable spectral theory in the sense of J. L.
problem (0. 2) was the same u that of problem (0. 1). Incidentally, later on Mandzhavidze and Khvedclidze (I) and Simonenko (I) achieved a direct reduction of problem (0. 2) to problem (0. 1) with the help of conformal mappings. Apparenlly, the first paper in which SIES were considered was the paper by Vekua (2) published in 1948. Vekua verified that the equation (0. 3) where (1; C(f), 5 is the operator of 'ingular integration with a Cauchy kernel (Srp)(!) " (". i)-I fr(T - t)-lrp(T)dT, W is the shift operator (WrpHt) = rp{a(t", in the case 01 = - (13,0, = 0. , could be reduced to problem (0. 2). We note thai, in problem (0. 2), the shift ott) need not be a Carlemao shift, . ei. , it is oot necessary that a . . (t) :::: t for some integer 11 ~ 2, where ai(l) " o(ok_dt)), 0(1(1) ::::!. For the first time, the condition 0,(1) == 1 appeared in BPAFS theory in connection with the study of the problem (0. 4) by Carle man (2) who, in particular, showed that problem (0. 4) Wall a natural generalization of the problem on the existence of an a. utomorphic function belonging to a certain group of Fucs. Thus, the paper by Vckua (2) is also the fint paper in which a singular integral equation with a non*Carieman 5hifl is on c sidered.
This volume contains the proceedings of the International Workshop on Operator Theory and Applications held at the University of Algarve in Faro, Portugal, September 12-15, in the year 2000. The main topics of the conference were !> Factorization Theory; !> Factorization and Integrable Systems; !> Operator Theoretical Methods in Diffraction Theory; !> Algebraic Techniques in Operator Theory; !> Applications to Mathematical Physics and Related Topics. A total of 94 colleagues from 21 countries participated in the conference. The major part of participants came from Portugal (32), Germany (17), Israel (6), Mexico (6), the Netherlands (5), USA (4) and Austria (4). The others were from Ukraine, Venezuela (3 each), Spain, Sweden (2 each), Algeria, Australia, Belorussia, France, Georgia, Italy, Japan, Kuwait, Russia and Turkey (one of each country). It was the 12th meeting in the framework of the IWOTA conferences which started in 1981 on an initiative of Professors 1. Gohberg (Tel Aviv) and J. W. Helton (San Diego). Up to now, it was the largest conference in the field of Operator Theory in Portugal.
The evolution of systems in random media is a broad and fruitful field for the applica tions of different mathematical methods and theories. This evolution can be character ized by a semigroup property. In the abstract form, this property is given by a semigroup of operators in a normed vector (Banach) space. In the practically boundless variety of mathematical models of the evolutionary systems, we have chosen the semi-Markov ran dom evolutions as an object of our consideration. The definition of the evolutions of this type is based on rather simple initial assumptions. The random medium is described by the Markov renewal processes or by the semi Markov processes. The local characteristics of the system depend on the state of the ran dom medium. At the same time, the evolution of the system does not affect the medium. Hence, the semi-Markov random evolutions are described by two processes, namely, by the switching Markov renewal process, which describes the changes of the state of the external random medium, and by the switched process, i.e., by the semigroup of oper ators describing the evolution of the system in the semi-Markov random medium.
'Et moi, .. Of si j'avail su comment en revenir. je One selVice mathematics has rendered the n'y semis point alll!.' human race. It has put common sense back Jules Verne when: it belongs, on the topmon shelf next to the dusty canister labelled 'discarded nonsense'. The series is divergent; therefore we may be Eric T. Bell able to do something with iL O. Heaviside Mathematics is a tool for thought A highly necessary tool in a world where both feedback and nonlineari- ties abound, Similarly. all kinds of parts of mathematics serve as tools for other parts and for other sci- ences, Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One ser- vice topology has rendered mathematical physics .. , '; 'One service logic has rendered computer science ...'; 'One service category theory has rendered mathematics ...'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
The study of systems of special partial differential operators that arise naturally from the use of Clifford algebra as a calculus tool lies in the heart of Clifford analysis. The focus is on the study of Dirac operators and related ones, together with applications in mathematics, physics and engineering. At the present time, the study of Clifford algebra and Clifford analysis has grown into a major research field. There are two sources of papers in this collection. One is from a satellite conference to the ICM 2002 in Beijing, held August 15-18 at the University of Macau; and the other stems from invited contributions by top-notch experts in the field.
lEt moi, .... si j'avait Sll comment en revenir, One service mathematics has rendered the human race. It has put common sense back je n'y serais point aile: ' where it belongs, on the topmost shelf next Jules Verne to the dusty canister labelled 'discarded 0- sense'. The series is divergent; therefore we may be Eric T. Bell able to do something with it. o. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d 'e1re of this series."
One of the most challenging subjects of stochastic analysis in relation to physics is the analysis of heat kernels on infinite dimensional manifolds. The simplest nontrivial case is that of thepath and loop space on a Lie group. In this volume an up-to-date survey of the topic is given by Leonard Gross, a prominent developer of the theory. Another concise but complete survey of Hausdorff measures on Wiener space and its applications to Malliavin Calculus is given by D. Feyel, one of the most active specialists in this area. Other survey articles deal with short-time asymptotics of diffusion pro cesses with values in infinite dimensional manifolds and large deviations of diffusions with discontinuous drifts. A thorough survey is given of stochas tic integration with respect to the fractional Brownian motion, as well as Stokes' formula for the Brownian sheet, and a new version of the log Sobolev inequality on the Wiener space. Professional mathematicians looking for an overview of the state-of-the art in the above subjects will find this book helpful. In addition, graduate students as well as researchers whose domain requires stochastic analysis will find the original results of interest for their own research. The organizers acknowledge gratefully the financial help ofthe University of Oslo, and the invaluable aid of Professor Bernt 0ksendal and l'Ecole Nationale Superieure des Telecommunications.
One service mathematics has rmdcred the 'Et moi, .*.* si j'avait su comment en rcvenir. human race. It has put common sense back je n'y semis point aile.' whc:rc it belongs, on the topmost shcIl next Jules Verne to the dusty callister labc:1lcd 'discarded non- sense'. The series is divergent; thererore we may be Eric T. Bell able to do something with iL O. Hcavisidc Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non- linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ...'; 'One service logic has rendered com- puter science ...'; 'One service category theory has rendered mathematics ...'. All arguably true. And alI statements obtainable this way form part of the raison d'etre of this series.
The title High Dimensional Probability is used to describe the many tributaries of research on Gaussian processes and probability in Banach spaces that started in the early 1970s. Many of the problems that motivated researchers at that time were solved. But the powerful new tools created for their solution turned out to be applicable to other important areas of probability. They led to significant advances in the study of empirical processes and other topics in theoretical statistics and to a new approach to the study of aspects of Levy processes and Markov processes in general. The papers in this book reflect these broad categories. The volume thus will be a valuable resource for postgraduates and reseachers in probability theory and mathematical statistics."
This self-contained title demonstrates an important interplay between abstract and concrete operator theory. Key ideas are developed in a step-by-step approach, beginning with required background and historical material, and culminating in the final chapters with state-of-the-art topics. Good examples, bibliography and index make this text a valuable classroom or reference resource.
Harmonic Analysis in China is a collection of surveys and research papers written by distinguished Chinese mathematicians from within the People's Republic of China and expatriates. The book covers topics in analytic function spaces of several complex variables, integral transforms, harmonic analysis on classical Lie groups and manifolds, LP- estimates of the Cauchy-Riemann equations and wavelet transforms. The reader will also be able to trace the great influence of the late Professor Loo-keng Hua's ideas and methods on research into harmonic analysis on classical domains and the theory of functions of several complex variables. Western scientists will thus become acquainted with the unique features and future trends of harmonic analysis in China. Audience: Analysts, as well as engineers and physicists who use harmonic analysis. |
![]() ![]() You may like...
Smart Technologies in Data Science and…
Sanjoy Kumar Saha, Paul S. Pang, …
Hardcover
R5,645
Discovery Miles 56 450
Statistical Applications from Clinical…
Jianchang Lin, Bushi Wang, …
Hardcover
R6,400
Discovery Miles 64 000
Future Information Technology - II
James J (Jong Hyuk) Park, Yi Pan, …
Hardcover
R4,986
Discovery Miles 49 860
Fundamentals of Quantum Programming in…
Weng-Long Chang, Athanasios V Vasilakos
Hardcover
R2,879
Discovery Miles 28 790
Scheduling Problems - New Applications…
Rodrigo Da Rosa Righi
Hardcover
R3,325
Discovery Miles 33 250
Principles of Radio Navigation for…
Sauta O.I., Shatrakov A.Y., …
Hardcover
R2,873
Discovery Miles 28 730
Research and Innovation Forum 2020…
Anna Visvizi, Miltiadis D Lytras, …
Hardcover
R4,498
Discovery Miles 44 980
Computational Intelligence and…
Maude Josee Blondin, Panos M. Pardalos, …
Hardcover
Bio-inspired Algorithms for Data…
Simon James Fong, Richard C. Millham
Hardcover
R4,924
Discovery Miles 49 240
|