![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Integral equations
Inverse scattering theory is a major theme in applied mathematics, with applications to such diverse areas as medical imaging, geophysical exploration, and nondestructive testing. The inverse scattering problem is both nonlinear and ill-posed, thus presenting challenges in the development of efficient inversion algorithms. A further complication is that anisotropic materials cannot be uniquely determined from given scattering data. In the first edition of Inverse Scattering Theory and Transmission Eigenvalues, the authors discussed methods for determining the support of inhomogeneous media from measured far field data and the role of transmission eigenvalue problems in the mathematical development of these methods. In this second edition, three new chapters describe recent developments in inverse scattering theory. In particular, the authors explore the use of modified background media in the nondestructive testing of materials and methods for determining the modified transmission eigenvalues that arise in such applications from measured far field data. They also examine nonscattering wave numbers-a subset of transmission eigenvalues-using techniques taken from the theory of free boundary value problems for elliptic partial differential equations and discuss the dualism of scattering poles and transmission eigenvalues that has led to new methods for the numerical computation of scattering poles. This book will be of interest to research mathematicians and engineers and physicists working on problems in target identification. It will also be useful to advanced graduate students in many areas of applied mathematics.
This book provides a detailed study of recent results in metric fixed point theory and presents several applications in nonlinear analysis, including matrix equations, integral equations and polynomial approximations. Each chapter is accompanied by basic definitions, mathematical preliminaries and proof of the main results. Divided into ten chapters, it discusses topics such as the Banach contraction principle and its converse; Ran-Reurings fixed point theorem with applications; the existence of fixed points for the class of - contractive mappings with applications to quadratic integral equations; recent results on fixed point theory for cyclic mappings with applications to the study of functional equations; the generalization of the Banach fixed point theorem on Branciari metric spaces; the existence of fixed points for a certain class of mappings satisfying an implicit contraction; fixed point results for a class of mappings satisfying a certain contraction involving extended simulation functions; the solvability of a coupled fixed point problem under a finite number of equality constraints; the concept of generalized metric spaces, for which the authors extend some well-known fixed point results; and a new fixed point theorem that helps in establishing a Kelisky-Rivlin type result for q-Bernstein polynomials and modified q-Bernstein polynomials. The book is a valuable resource for a wide audience, including graduate students and researchers.
Many problems arising in the physical sciences, engineering, biology and ap plied mathematics lead to mathematical models described by nonlinear integral equations in abstract spaces. The theory of nonlinear integral equations in ab stract spaces is a fast growing field with important applications to a number of areas of analysis as well as other branches of science. This book is devoted to a comprehensive treatment of nonlinear integral equations in abstract spaces. It is the first book that is dedicated to a systematic development of this subject, and it includes the developments during recent years. Chapter 1 introduces some basic results in analysis, which will be used in later chapters. Chapter 2, which is a main portion of this book, deals with nonlin ear integral equations in Banach spaces, including equations of Fredholm type, of Volterra type and equations of Hammerstein type. Some applica equations tions to nonlinear differential equations in Banach spaces are given. We also discuss an integral equation modelling infectious disease as a typical applica tion. In Chapter 3, we investigate the first order and second order nonlinear integro-differential equations in Banach spaces including equations of Volterra type and equations of mixed type. Chapter 4 is devoted to nonlinear impulsive integral equations in Banach spaces and their applications to nonlinear impul sive differential equations in Banach spaces."
This volume collects thirteen expository or survey articles on topics including Fractal Geometry, Analysis of Fractals, Multifractal Analysis, Ergodic Theory and Dynamical Systems, Probability and Stochastic Analysis, written by the leading experts in their respective fields. The articles are based on papers presented at the International Conference on Advances on Fractals and Related Topics, held on December 10-14, 2012 at the Chinese University of Hong Kong. The volume offers insights into a number of exciting, cutting-edge developments in the area of fractals, which has close ties to and applications in other areas such as analysis, geometry, number theory, probability and mathematical physics.
The contributions in this volume aim to deepen understanding of some of the current research problems and theories in modern topics such as calculus of variations, optimization theory, complex analysis, real analysis, differential equations, and geometry. Applications to these areas of mathematics are presented within the broad spectrum of research in Engineering Science with particular emphasis on equilibrium problems, complexity in numerical optimization, dynamical systems, non-smooth optimization, complex network analysis, statistical models and data mining, and energy systems. Additional emphasis is given to interdisciplinary research, although subjects are treated in a unified and self-contained manner. The presentation of methods, theory and applications makes this tribute an invaluable reference for teachers, researchers, and other professionals interested in pure and applied research, philosophy of mathematics, and mathematics education. Some review papers published in this volume will be particularly useful for a broader audience of readers as well as for graduate students who search for the latest information. Constantin Caratheodory's wide-ranging influence in the international mathematical community was seen during the first Fields Medals awards at the International Congress of Mathematicians, Oslo, 1936. Two medals were awarded, one to Lars V. Ahlfors and one to Jesse Douglass. It was Caratheodory who presented both their works during the opening of the International Congress. This volume contains significant papers in Science and Engineering dedicated to the memory of Constantin Caratheodory and the spirit of his mathematical influence.
From the reviews of the first edition:
The book presents the method of difference potentials first proposed by the author in 1969 and contains illustrative examples and new algorithms for solving applied problems of gas dynamics, diffraction, scattering theory, and active noise screening. The fundamentals of the method are described in Parts I-III and its applications in Parts IV-VIII. To get acquainted with the basic ideas of the method, it suffices to study the Introduction. After this, each of the Parts VI-VIII can be read independently. The book is intended for specialists in the field of computational mathematics and the theory of differential and integral equations, as well as for graduate students of related specialities.
Integral geometry deals with the problem of determining functions by their integrals over given families of sets. These integrals de?ne the corresponding integraltransformandoneofthemainquestionsinintegralgeometryaskswhen this transform is injective. On the other hand, when we work with complex measures or forms, operators appear whose kernels are non-trivial but which describe important classes of functions. Most of the questions arising here relate, in one way or another, to the convolution equations. Some of the well known publications in this ?eld include the works by J. Radon, F. John, J. Delsarte, L. Zalcman, C. A. Berenstein, M. L. Agranovsky and recent monographs by L. H] ormander and S. Helgason. Until recently research in this area was carried out mostly using the technique of the Fourier transform and corresponding methods of complex analysis. In recent years the present author has worked out an essentially di?erent methodology based on the description of various function spaces in terms of - pansions in special functions, which has enabled him to establish best possible results in several well known problems."
This is the second of two volumes containing peer-reviewed research and survey papers based on invited talks at the International Conference on Modern Analysis and Applications. The conference, which was dedicated to the 100th anniversary ofthebirthofMarkKrein,oneofthegreatestmathematiciansofthe20thcentury, was held in Odessa, Ukraine, on April 9-14, 2007. The conference focused on the main ideas, methods, results, and achievements of M.G. Krein. This second volume is devoted to the theory of di?erential operators and mechanics. It opens with the description of the conference and a number of survey papers about the work of M.G. Krein. The main part of the book consists of original research papers presenting the state of the art in the area of di?erential operators. The ?rst volume of these proceedings, entitled Operator Theory and Related Topics, concerns other aspects of the conference. The two volumes will be of - terest to a wide-rangeof readership in pure and applied mathematics, physics and engineering sciences. OperatorTheory: AdvancesandApplications,Vol.191, xi-xv c 2009Birkh. auserVerlagBasel/Switzerland The World Dimension of the Heritage of a Ukrainian Mathematician International Conference "Modern Analysis and Applications" (MAA - 2007) (April 9-14, 2007, Odessa) Yu. BerezanskyandV.Gorbachuk This forum has been dedicated to the centennial birthday anniversary of one of the most prominent mathematicians of the twentieth century Mark Gr- orievich Krein, a corresponding member of the Academy of Sciences of the Ukr. SSR (1907-1989).
This textbook describes selected topics in functional analysis as powerful tools of immediate use in many fields within applied mathematics, physics and engineering. It follows a very reader-friendly structure, with the presentation and the level of exposition especially tailored to those who need functional analysis but don't have a strong background in this branch of mathematics. For every tool, this work emphasizes the motivation, the justification for the choices made, and the right way to employ the techniques. Proofs appear only when necessary for the safe use of the results. The book gently starts with a road map to guide reading. A subsequent chapter recalls definitions and notation for abstract spaces and some function spaces, while Chapter 3 enters dual spaces. Tools from Chapters 2 and 3 find use in Chapter 4, which introduces distributions. The Linear Functional Analysis basic triplet makes up Chapter 5, followed by Chapter 6, which introduces the concept of compactness. Chapter 7 brings a generalization of the concept of derivative for functions defined in normed spaces, while Chapter 8 discusses basic results about Hilbert spaces that are paramount to numerical approximations. The last chapter brings remarks to recent bibliographical items. Elementary examples included throughout the chapters foster understanding and self-study. By making key, complex topics more accessible, this book serves as a valuable resource for researchers, students, and practitioners alike that need to rely on solid functional analysis but don't need to delve deep into the underlying theory.
This is the proceedings of the workshop on recent developments in ergodic theory and dynamical systems on March 2011 and March 2012 at the University of North Carolina at Chapel Hill. The articles in this volume cover several aspects of vibrant research in ergodic theory and dynamical systems. It contains contributions to Teichmuller dynamics, interval exchange transformations, continued fractions, return times averages, Furstenberg Fractals, fractal geometry of non-uniformly hyperbolic horseshoes, convergence along the sequence of squares, adic and horocycle flows, and topological flows. These contributions illustrate the connections between ergodic theory and dynamical systems, number theory, harmonic analysis, probability, and algebra. Two surveys are included which give a nice introduction for interested young or senior researcher to some active research areas. Overall this volume provides a very useful blend of techniques and methods as well as directions of research on general convergence phenomena in ergodic theory and dynamical systems.
Since from more than a century, the study of various types of integral equations and inequalities has been focus of great attention by many researchers, interested both in theory and its applications. In particular, there exists a very rich literature related to the integral equations and inequalities and their applications. The present monograph is an attempt to organize recent progress related to the Multidimensional integral equations and inequalities, which we hope will widen the scope of their new applications. The field to be covered is extremely wide and it is nearly impossible to treat all of them here. The material included in the monograph is recent and hard to find in other books. It is accessible to any reader with reasonable background in real analysis and acquaintance with its related areas. All results are presented in an elementary way and the book could also serve as a textbook for an advanced graduate course. The book deserves a warm welcome to those who wish to learn the subject and it will also be most valuable as a source of reference in the field. It will be an invaluable reading for mathematicians, physicists and engineers and also for graduate students, scientists and scholars wishing to keep abreast of this important area of research.
This is the ?rst of two volumes containing peer-reviewed research and survey papers based on invited talks at the International Conference on Modern Analysis and Applications. The conference, which was dedicated to the 100th anniversary ofthebirthofMarkKrein,oneofthegreatestmathematiciansofthe20thcentury, was held in Odessa, Ukraine, on April 9-14, 2007. The conference focused on the main ideas, methods, results, and achievements of M. G. Krein. This?rstvolumeisdevotedtotheoperatortheoryandrelatedtopics. Itopens withthebiographypapersaboutM. G. Kreinandanumberofsurveypapersabout his work. The mainpartof the book consistsof originalresearchpaperspresenting the state of the art in operator theory and its application. The second volume of these proceedings, entitled Di?erential Operators and Mechanics, concerns other aspects of the conference. The two volumes will be of interest to a wide-range of readership in pure and applied mathematics, physics and engineering sciences. The editors are sincerely grateful to the persons who contributed to the preparation of these proceedings: Sergei Marchenko, Myroslav Sushko, Kostyantyn Yusenko and Vladimir Zavalnyuk. Mark Grigorievich Krein, 1907-1989 Operator Theory: Advances and Applications, Vol. 190, xi-xx c 2009 Birkh. auser Verlag Basel/Switzerland Mark Grigorievich Krein (on his 100th birthday anniversary) V. M. Adamyan, D. Z. Arov, Yu. M. Berezansky, V. I. Gorbachuk, M. L. Gorbachuk, V. A. Mikhailets and A. M. Samoilenko April 3, 2007, is the l00th anniversary of the birth of Mark Grigorievich Krein, one of the most celebrated mathematicians of the 20th century, whose whole life was closely connected with Ukraine.
In this monograph the authors present detailed and pedagogic proofs of persistence theorems for normally hyperbolic invariant manifolds and their stable and unstable manifolds for classes of perturbations of the NLS equation, as well as for the existence and persistence of fibrations of these invariant manifolds. Their techniques are based on an infinite dimensional generalisation of the graph transform and can be viewed as an infinite dimensional generalisation of Fenichels results. As such, they may be applied to a broad class of infinite dimensional dynamical systems.
This textbook presents a systematic study of the qualitative and geometric theory of nonlinear differential equations and dynamical systems. Although the main topic of the book is the local and global behavior of nonlinear systems and their bifurcations, a thorough treatment of linear systems is given at the beginning of the text. All the material necessary for a clear understanding of the qualitative behavior of dynamical systems is contained in this textbook, including an outline of the proof and examples illustrating the proof of the Hartman-Grobman theorem, the use of the Poincare map in the theory of limit cycles, the theory of rotated vector fields and its use in the study of limit cycles and homoclinic loops, and a description of the behavior and termination of one-parameter families of limit cycles. In addition to minor corrections and updates throughout, this new edition includes materials on higher order Melnikov theory and the bifurcation of limit cycles for planar systems of differential equations, including new sections on Francoise's algorithm for higher order Melnikov functions and on the finite codimension bifurcations that occur in the class of bounded quadratic systems.
This book develops integral identities, mostly involving multidimensional functions and infinite limits of integration, whose evaluations are intractable by common means. It exposes a methodology based on the multivariate power substitution and its variants, assisted by the software tool Mathematica. The approaches introduced comprise the generalized method of exhaustion, the multivariate power substitution and its variants, and the use of permutation symmetry to evaluate definite integrals, which are very important both in their own right, and as necessary intermediate steps towards more involved computation. A key tenet is that such approaches work best when applied to integrals having certain characteristics as a starting point. Most integrals, if used as a starting point, will lead to no result at all, or will lead to a known result. However, there is a special class of integrals (i.e., innovative integrals) which, if used as a starting point for such approaches, will lead to new and useful results, and can also enable the reader to generate many other new results that are not in the book. The reader will find a myriad of novel approaches for evaluating integrals, with a focus on tools such as Mathematica as a means of obtaining useful results, and also checking whether they are already known. Results presented involve the gamma function, the hypergeometric functions, the complementary error function, the exponential integral function, the Riemann zeta function, and others that will be introduced as they arise. The book concludes with selected engineering applications, e.g., involving wave propagation, antenna theory, non-Gaussian and weighted Gaussian distributions, and other areas. The intended audience comprises junior and senior sciences majors planning to continue in the pure and applied sciences at the graduate level, graduate students in mathematics and the sciences, and junior and established researchers in mathematical physics, engineering, and mathematics. Indeed, the pedagogical inclination of the exposition will have students work out, understand, and efficiently use multidimensional integrals from first principles.
This contributed volume contains a collection of articles on state-of-the-art developments on the construction of theoretical integral techniques and their application to specific problems in science and engineering. Chapters in this book are based on talks given at the Symposium on the Theory and Applications of Integral Methods in Science and Engineering, held virtually in July 2021, and are written by internationally recognized researchers. This collection will be of interest to researchers in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students in these disciplines and other professionals for whom integration is an essential tool.
This volume is part of the collaboration agreement between Springer and the ISAAC society. This is the first in the two-volume series originating from the 2020 activities within the international scientific conference "Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis" (OTHA), Southern Federal University in Rostov-on-Don, Russia. This volume is focused on general harmonic analysis and its numerous applications. The two volumes cover new trends and advances in several very important fields of mathematics, developed intensively over the last decade. The relevance of this topic is related to the study of complex multiparameter objects required when considering operators and objects with variable parameters.
The book presents a combination of two topics: one coming from the theory of approximation of functions and integrals by interpolation and quadrature, respectively, and the other from the numerical analysis of operator equations, in particular, of integral and related equations. The text focusses on interpolation and quadrature processes for functions defined on bounded and unbounded intervals and having certain singularities at the endpoints of the interval, as well as on numerical methods for Fredholm integral equations of first and second kind with smooth and weakly singular kernel functions, linear and nonlinear Cauchy singular integral equations, and hypersingular integral equations. The book includes both classic and very recent results and will appeal to graduate students and researchers who want to learn about the approximation of functions and the numerical solution of operator equations, in particular integral equations.
The appearance of weakly wandering (ww) sets and sequences for ergodic transformations over half a century ago was an unexpected and surprising event. In time it was shown that ww and related sequences reflected significant and deep properties of ergodic transformations that preserve an infinite measure. This monograph studies in a systematic way the role of ww and related sequences in the classification of ergodic transformations preserving an infinite measure. Connections of these sequences to additive number theory and tilings of the integers are also discussed. The material presented is self-contained and accessible to graduate students. A basic knowledge of measure theory is adequate for the reader.
This book provides a comprehensive examination of preconditioners for boundary element discretisations of first-kind integral equations. Focusing on domain-decomposition-type and multilevel methods, it allows readers to gain a good understanding of the mechanisms and necessary techniques in the analysis of the preconditioners. These techniques are unique for the discretisation of first-kind integral equations since the resulting systems of linear equations are not only large and ill-conditioned, but also dense. The book showcases state-of-the-art preconditioning techniques for boundary integral equations, presenting up-to-date research. It also includes a detailed discussion of Sobolev spaces of fractional orders to familiarise readers with important mathematical tools for the analysis. Furthermore, the concise overview of adaptive BEM, hp-version BEM, and coupling of FEM-BEM provides efficient computational tools for solving practical problems with applications in science and engineering.
Slowly, but surely, it is becoming a tradition that biannual international conf- enceson"VectorMeasuresandIntegration"aretakingplace.The?rstmeetingwas held in Valencia (Spain) in 2004 with the respectable total of 35 participants and the second meeting in Sevilla (Spain) in 2006with 50 participants.It became clear at the latter meeting that there was already a broader interest level in the area generally(asitshouldbe).Relatedareasfromoperatortheory,functionalanalysis, Banach (and Fr' echet) spaces and lattices, non-commutative integration, function theory, classical and harmonic analysis, mathematical physics, and applied ma- ematics havetraditionallyused methods and techniquesfrom vector measuresand integration theory and, simultaneously, have themselves provided new problems, directions and impetus for the theory of vector measures and integration. So, for the third meeting, held in Eichst. att (Germany) in September 2008, a natural and deliberate step was taken to put a larger emphasis on applications andconnectionswith other areasofmathematics.Accordingly,the conferencetitle was modi?ed to "Vector Measures, Integration and Applications", which is also re?ected in the title of this volume. Correspondingly, the attendance grew to 84 participants, which illustrates that the area is really thriving. Most importantly, there was also a healthy mixture of "oldies" and younger researchers in att- dance, coming from 21 countries. In addition, there was a pleasant and interesting combination of abstract theory, concrete applications and open problems. Needless to say, the fourth meeting is already ?xed; it will take place in late 2010 in Murcia (Spain). Thisvolumeconsistsofaselectionofrefereedpapersbasedontalkspresented at the conference. The included papers represent rather well most of the topics covered in the conference.
1. Preliminaries, Notation, and Terminology n n 1.1. Sets and functions in lR. * Throughout the book, lR. stands for the n-dimensional arithmetic space of points x = (X},X2,'" ,xn)j Ixl is the length of n n a vector x E lR. and (x, y) is the scalar product of vectors x and y in lR. , i.e., for x = (Xl, X2, *.* , xn) and y = (y}, Y2,**., Yn), Ixl = Jx~ + x~ + ...+ x~, (x, y) = XIYl + X2Y2 + ...+ XnYn. n Given arbitrary points a and b in lR. , we denote by [a, b] the segment that joins n them, i.e. the collection of points x E lR. of the form x = >.a + I'b, where>. + I' = 1 and >. ~ 0, I' ~ O. n We denote by ei, i = 1,2, ...,n, the vector in lR. whose ith coordinate is equal to 1 and the others vanish. The vectors el, e2, ...,en form a basis for the space n lR. , which is called canonical. If P( x) is some proposition in a variable x and A is a set, then {x E A I P(x)} denotes the collection of all the elements of A for which the proposition P( x) is true.
This proceedings volume features selected contributions from the conference Positivity X. The field of positivity deals with ordered mathematical structures and their applications. At the biannual series of Positivity conferences, the latest developments in this diverse field are presented. The 2019 edition was no different, with lectures covering a broad spectrum of topics, including vector and Banach lattices and operators on such spaces, abstract stochastic processes in an ordered setting, the theory and applications of positive semi-groups to partial differential equations, Hilbert geometries, positivity in Banach algebras and, in particular, operator algebras, as well as applications to mathematical economics and financial mathematics. The contributions in this book reflect the variety of topics discussed at the conference. They will be of interest to researchers in functional analysis, operator theory, measure and integration theory, operator algebras, and economics. Positivity X was dedicated to the memory of our late colleague and friend, Coenraad Labuschagne. His untimely death in 2018 came as an enormous shock to the Positivity community. He was a prominent figure in the Positivity community and was at the forefront of the recent development of abstract stochastic processes in a vector lattice context.
This book presents a systematic treatment of the Rademacher system, one of the most important unifying concepts in mathematics, and includes a number of recent important and beautiful results related to the Rademacher functions. The book discusses the relationship between the properties of the Rademacher system and geometry of some function spaces. It consists of three parts, in which this system is considered respectively in Lp-spaces, in general symmetric spaces and in certain classes of non-symmetric spaces (BMO, Paley, Cesaro, Morrey). The presentation is clear and transparent, providing all main results with detailed proofs. Moreover, literary and historical comments are given at the end of each chapter. This book will be suitable for graduate students and researchers interested in functional analysis, theory of functions and geometry of Banach spaces. |
You may like...
Interest Rate Models: an Infinite…
Rene Carmona, M.R. Tehranchi
Hardcover
R1,541
Discovery Miles 15 410
Hyper-lattice Algebraic Model for Data…
Soumya Sen, Agostino Cortesi, …
Paperback
R1,561
Discovery Miles 15 610
Heat Kernels for Elliptic and…
Ovidiu Calin, Der-Chen Chang, …
Hardcover
R2,895
Discovery Miles 28 950
Artificial Intelligence Applications and…
Ilias Maglogiannis, Lazaros Iliadis, …
Hardcover
R2,732
Discovery Miles 27 320
Operator-Related Function Theory and…
Karlheinz Groechenig, Yurii Lyubarskii, …
Hardcover
R2,658
Discovery Miles 26 580
|