![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Integral equations
This book aims to provide an introduction to the broad and dynamic subject of discrete energy problems and point configurations. Written by leading authorities on the topic, this treatise is designed with the graduate student and further explorers in mind. The presentation includes a chapter of preliminaries and an extensive Appendix that augments a course in Real Analysis and makes the text self-contained. Along with numerous attractive full-color images, the exposition conveys the beauty of the subject and its connection to several branches of mathematics, computational methods, and physical/biological applications. This work is destined to be a valuable research resource for such topics as packing and covering problems, generalizations of the famous Thomson Problem, and classical potential theory in Rd. It features three chapters dealing with point distributions on the sphere, including an extensive treatment of Delsarte-Yudin-Levenshtein linear programming methods for lower bounding energy, a thorough treatment of Cohn-Kumar universality, and a comparison of 'popular methods' for uniformly distributing points on the two-dimensional sphere. Some unique features of the work are its treatment of Gauss-type kernels for periodic energy problems, its asymptotic analysis of minimizing point configurations for non-integrable Riesz potentials (the so-called Poppy-seed bagel theorems), its applications to the generation of non-structured grids of prescribed densities, and its closing chapter on optimal discrete measures for Chebyshev (polarization) problems.
An important class of integral expansions generated by Sturm-Liouville theory involving spherical harmonics is commonly known as Mehler-Fock integral transforms. In this book, a number of integral expansions of such type have been established rigorously. As applications, integral expansions of some simple function are also obtained.
This volume consists of contributions spanning a wide spectrum of harmonic analysis and its applications written by speakers at the February Fourier Talks from 2002 - 2016. Containing cutting-edge results by an impressive array of mathematicians, engineers, and scientists in academia, industry and government, it will be an excellent reference for graduate students, researchers, and professionals in pure and applied mathematics, physics, and engineering. Topics covered include: Theoretical harmonic analysis Image and signal processing Quantization Algorithms and representations The February Fourier Talks are held annually at the Norbert Wiener Center for Harmonic Analysis and Applications. Located at the University of Maryland, College Park, the Norbert Wiener Center provides a state-of- the-art research venue for the broad emerging area of mathematical engineering.
This is the proceedings of the workshop on recent developments in ergodic theory and dynamical systems on March 2011 and March 2012 at the University of North Carolina at Chapel Hill. The articles in this volume cover several aspects of vibrant research in ergodic theory and dynamical systems. It contains contributions to Teichmuller dynamics, interval exchange transformations, continued fractions, return times averages, Furstenberg Fractals, fractal geometry of non-uniformly hyperbolic horseshoes, convergence along the sequence of squares, adic and horocycle flows, and topological flows. These contributions illustrate the connections between ergodic theory and dynamical systems, number theory, harmonic analysis, probability, and algebra. Two surveys are included which give a nice introduction for interested young or senior researcher to some active research areas. Overall this volume provides a very useful blend of techniques and methods as well as directions of research on general convergence phenomena in ergodic theory and dynamical systems.
The object of homogenization theory is the description of the macroscopic properties of structures with fine microstructure, covering a wide range of applications that run from the study of properties of composites to optimal design. The structures under consideration may model cellular elastic materials, fibred materials, stratified or porous media, or materials with many holes or cracks. In mathematical terms, this study can be translated in the asymptotic analysis of fast-oscillating differential equations or integral functionals. The book presents an introduction to the mathematical theory of homogenization of nonlinear integral functionals, with particular regard to those general results that do not rely on smoothness or convexity assumptions. Homogenization results and appropriate descriptive formulas are given for periodic and almost- periodic functionals. The applications include the asymptotic behaviour of oscillating energies describing cellular hyperelastic materials, porous media, materials with stiff and soft inclusions, fibered media, homogenization of HamiltonJacobi equations and Riemannian metrics, materials with multiple scales of microstructure and with multi-dimensional structure. The book includes a specifically designed, self-contained and up-to-date introduction to the relevant results of the direct methods of Gamma-convergence and of the theory of weak lower semicontinuous integral functionals depending on vector-valued functions. The book is based on various courses taught at the advanced graduate level. Prerequisites are a basic knowledge of Sobolev spaces, standard functional analysis and measure theory. The presentation is completed by several examples and exercises.
A self-contained account of integro-differential equations of the Barbashin type and partial integral operators. It presents the basic theory of Barbashin equations in spaces of continuous or measurable functions, including existence, uniqueness, stability and perturbation results. The theory and applications of partial integral operators and linear and nonlinear equations is discussed. Topics range from abstract functional-analytic approaches to specific uses in continuum mechanics and engineering.
This book describes integration and measure theory for readers interested in analysis, engineering, and economics. It gives a systematic account of Riemann-Stieltjes integration and deduces the Lebesgue-Stieltjes measure from the Lebesgue-Stieltjes integral.
This book contains twenty four papers, presented at the conference on Volterra and Functional Differential Equations held in Virginia in 1981, on various topics, including Liapunov stability, Volterra equations, integral equations, and functional differential equations.
This is the first book to present a systematic review of applications of the Haar wavelet method for solving Calculus and Structural Mechanics problems. Haar wavelet-based solutions for a wide range of problems, such as various differential and integral equations, fractional equations, optimal control theory, buckling, bending and vibrations of elastic beams are considered. Numerical examples demonstrating the efficiency and accuracy of the Haar method are provided for all solutions.
This monograph gives a state-of-the-art and accessible treatment of a new general higher-dimensional theory of complex dimensions, valid for arbitrary bounded subsets of Euclidean spaces, as well as for their natural generalization, relative fractal drums. It provides a significant extension of the existing theory of zeta functions for fractal strings to fractal sets and arbitrary bounded sets in Euclidean spaces of any dimension. Two new classes of fractal zeta functions are introduced, namely, the distance and tube zeta functions of bounded sets, and their key properties are investigated. The theory is developed step-by-step at a slow pace, and every step is well motivated by numerous examples, historical remarks and comments, relating the objects under investigation to other concepts. Special emphasis is placed on the study of complex dimensions of bounded sets and their connections with the notions of Minkowski content and Minkowski measurability, as well as on fractal tube formulas. It is shown for the first time that essential singularities of fractal zeta functions can naturally emerge for various classes of fractal sets and have a significant geometric effect. The theory developed in this book leads naturally to a new definition of fractality, expressed in terms of the existence of underlying geometric oscillations or, equivalently, in terms of the existence of nonreal complex dimensions. The connections to previous extensive work of the first author and his collaborators on geometric zeta functions of fractal strings are clearly explained. Many concepts are discussed for the first time, making the book a rich source of new thoughts and ideas to be developed further. The book contains a large number of open problems and describes many possible directions for further research. The beginning chapters may be used as a part of a course on fractal geometry. The primary readership is aimed at graduate students and researchers working in Fractal Geometry and other related fields, such as Complex Analysis, Dynamical Systems, Geometric Measure Theory, Harmonic Analysis, Mathematical Physics, Analytic Number Theory and the Spectral Theory of Elliptic Differential Operators. The book should be accessible to nonexperts and newcomers to the field.
This book, based on a selection of talks given at a dedicated meeting in Cortona, Italy, in June 2013, shows the high degree of interaction between a number of fields related to applied sciences. Applied sciences consider situations in which the evolution of a given system over time is observed, and the related models can be formulated in terms of evolution equations (EEs). These equations have been studied intensively in theoretical research and are the source of an enormous number of applications. In this volume, particular attention is given to direct, inverse and control problems for EEs. The book provides an updated overview of the field, revealing its richness and vitality.
An enormous array of problems encountered by scientists and engineersare based on the design of mathematical models using many different types of ordinary differential, partial differential, integral, and integro-differential equations. Accordingly, the solutions of these equations areof great interest to practitioners and to science in general.Presentinga wealthof cutting-edgeresearchbya diverse group ofexperts in the field, "Integral Methods in Science and Engineering: Computational and Analytic Aspects"gives a vivid picture of both the development of theoretical integral techniques and their use in specific science and engineering problems. This bookwill be valuable for researchers in applied mathematics, physics, and mechanical and electrical engineering. It will likewise be a usefulstudy guideforgraduate students in these disciplines, and for various other professionals who use integration as an essential technique in their work. "
This up-to-the-minute reference/text provides a comprehensive review o f the Kurzweil{Henstock integration process on the real line and in hi gher dimensionsypresenting a unified theory of integration that highli ghts Riemann{Stieltjes, Stieltjes, and Lebesgue integrals as well as i ntegrals of elementary calculus. Furnishes practical applications of t he definitions and theorems in each section as well as appended sets o f exercises Contains novel concepts in differential analysis for eleg ant formulations of theorems and proofs
The book is intended for all those who are interested in application problems related to dynamical systems. It provides an overview of recent findings on dynamical systems in the broadest sense. Divided into 46 contributed chapters, it addresses a diverse range of problems. The issues discussed include: Finite Element Analysis of optomechatronic choppers with rotational shafts; computational based constrained dynamics generation for a model of a crane with compliant support; model of a kinetic energy recuperation system for city buses; energy accumulation in mechanical resonance; hysteretic properties of shell dampers; modeling a water hammer with quasi-steady and unsteady friction in viscoelastic conduits; application of time-frequency methods for the assessment of gas metal arc welding conditions; non-linear modeling of the human body's dynamic load; experimental evaluation of mathematical and artificial neural network modeling for energy storage systems; interaction of bridge cables and wake in vortex-induced vibrations; and the Sommerfeld effect in a single DOF spring-mass-damper system with non-ideal excitation.
This book is devoted to the mathematical analysis of the numerical solution of boundary integral equations treating boundary value, transmission and contact problems arising in elasticity, acoustic and electromagnetic scattering. It serves as the mathematical foundation of the boundary element methods (BEM) both for static and dynamic problems. The book presents a systematic approach to the variational methods for boundary integral equations including the treatment with variational inequalities for contact problems. It also features adaptive BEM, hp-version BEM, coupling of finite and boundary element methods - efficient computational tools that have become extremely popular in applications. Familiarizing readers with tools like Mellin transformation and pseudodifferential operators as well as convex and nonsmooth analysis for variational inequalities, it concisely presents efficient, state-of-the-art boundary element approximations and points to up-to-date research. The authors are well known for their fundamental work on boundary elements and related topics, and this book is a major contribution to the modern theory of the BEM (especially for error controlled adaptive methods and for unilateral contact and dynamic problems) and is a valuable resource for applied mathematicians, engineers, scientists and graduate students.
The book targets undergraduate and postgraduate mathematics students and helps them develop a deep understanding of mathematical analysis. Designed as a first course in real analysis, it helps students learn how abstract mathematical analysis solves mathematical problems that relate to the real world. As well as providing a valuable source of inspiration for contemporary research in mathematics, the book helps students read, understand and construct mathematical proofs, develop their problem-solving abilities and comprehend the importance and frontiers of computer facilities and much more. It offers comprehensive material for both seminars and independent study for readers with a basic knowledge of calculus and linear algebra. The first nine chapters followed by the appendix on the Stieltjes integral are recommended for graduate students studying probability and statistics, while the first eight chapters followed by the appendix on dynamical systems will be of use to students of biology and environmental sciences. Chapter 10 and the appendixes are of interest to those pursuing further studies at specialized advanced levels. Exercises at the end of each section, as well as commentaries at the end of each chapter, further aid readers' understanding. The ultimate goal of the book is to raise awareness of the fine architecture of analysis and its relationship with the other fields of mathematics.
This book provides an extensive introduction to the numerical solution of a large class of integral equations. The initial chapters provide a general framework for the numerical analysis of Fredholm integral equations of the second kind, covering degenerate kernel, projection and Nystrom methods. Additional discussions of multivariable integral equations and iteration methods update the reader on the present state of the art in this area. The final chapters focus on the numerical solution of boundary integral equation (BIE) reformulations of Laplace's equation, in both two and three dimensions. Two chapters are devoted to planar BIE problems, which include both existing methods and remaining questions. Practical problems for BIE such as the set up and solution of the discretised BIE are also discussed. Each chapter concludes with a discussion of the literature and a large bibliography serves as an extended resource for students and researchers needing more information on solving particular integral equations.
In this book the author presents the Opial, Poincare, Sobolev, Hilbert, and Ostrowski fractional differentiation inequalities. Results for the above are derived using three different types of fractional derivatives, namely by Canavati, Riemann-Liouville and Caputo. The univariate and multivariate cases are both examined. Each chapter is self-contained. The theory is presented systematically along with the applications. The application to information theory is also examined. This monograph is suitable for researchers and graduate students in pure mathematics. Applied mathematicians, engineers, and other applied scientists will also find this book useful."
An important class of integral expansions generated by Sturm-Liouville theory involving spherical harmonics is commonly known as Mehler-Fock integral transforms. In this book, a number of integral expansions of such type have been established rigorously. As applications, integral expansions of some simple function are also obtained.
This book develops a mathematical framework for modeling and
optimizing interference-coupled multiuser systems. At the core of
this framework is the concept of general interference functions,
which provides a simple means of characterizing interdependencies
between users. The entire analysis builds on the two core axioms
scale-invariance and monotonicity.
This book provides a self-contained introduction to convex geometry in Euclidean space. After covering the basic concepts and results, it develops Brunn-Minkowski theory, with an exposition of mixed volumes, the Brunn-Minkowski inequality, and some of its consequences, including the isoperimetric inequality. Further central topics are then treated, such as surface area measures, projection functions, zonoids, and geometric valuations. Finally, an introduction to integral-geometric formulas in Euclidean space is provided. The numerous exercises and the supplementary material at the end of each section form an essential part of the book. Convexity is an elementary and natural concept. It plays a key role in many mathematical fields, including functional analysis, optimization, probability theory, and stochastic geometry. Paving the way to the more advanced and specialized literature, the material will be accessible to students in the third year and can be covered in one semester.
This undergraduate textbook offers a self-contained and concise introduction to measure theory and integration. The author takes an approach to integration based on the notion of distribution. This approach relies on deeper properties of the Riemann integral which may not be covered in standard undergraduate courses. It has certain advantages, notably simplifying the extension to "fuzzy" measures, which is one of the many topics covered in the book. This book will be accessible to undergraduate students who have completed a first course in the foundations of analysis. Containing numerous examples as well as fully solved exercises, it is exceptionally well suited for self-study or as a supplement to lecture courses.
This innovative textbook bridges the gap between undergraduate analysis and graduate measure theory by guiding students from the classical foundations of analysis to more modern topics like metric spaces and Lebesgue integration. Designed for a two-semester introduction to real analysis, the text gives special attention to metric spaces and topology to familiarize students with the level of abstraction and mathematical rigor needed for graduate study in real analysis. Fitting in between analysis textbooks that are too formal or too casual, From Classical to Modern Analysis is a comprehensive, yet straightforward, resource for studying real analysis. To build the foundational elements of real analysis, the first seven chapters cover number systems, convergence of sequences and series, as well as more advanced topics like superior and inferior limits, convergence of functions, and metric spaces. Chapters 8 through 12 explore topology in and continuity on metric spaces and introduce the Lebesgue integrals. The last chapters are largely independent and discuss various applications of the Lebesgue integral. Instructors who want to demonstrate the uses of measure theory and explore its advanced applications with their undergraduate students will find this textbook an invaluable resource. Advanced single-variable calculus and a familiarity with reading and writing mathematical proofs are all readers will need to follow the text. Graduate students can also use this self-contained and comprehensive introduction to real analysis for self-study and review.
Many physical problems that are usually solved by differential equation methods can be solved more effectively by integral equation methods. Such problems abound in applied mathematics, theoretical mechanics, and mathematical physics. This uncorrected soft cover reprint of the second edition places the emphasis on applications and presents a variety of techniques with extensive examples.Originally published in 1971, Linear Integral Equations is ideal as a text for a beginning graduate level course. Its treatment of boundary value problems also makes the book useful to researchers in many applied fields.
This book gives a compact exposition of the fundamentals of the theory of locally convex topological vector spaces. Furthermore it contains a survey of the most important results of a more subtle nature, which cannot be regarded as basic, but knowledge which is useful for understanding applications. Finally, the book explores some of such applications connected with differential calculus and measure theory in infinite-dimensional spaces. These applications are a central aspect of the book, which is why it is different from the wide range of existing texts on topological vector spaces. Overall, this book develops differential and integral calculus on infinite-dimensional locally convex spaces by using methods and techniques of the theory of locally convex spaces. The target readership includes mathematicians and physicists whose research is related to infinite-dimensional analysis. |
You may like...
Groupoid Metrization Theory - With…
Dorina Mitrea, Irina Mitrea, …
Hardcover
R2,733
Discovery Miles 27 330
Integral Methods in Science and…
Christian Constanda, Matteo Dalla Riva, …
Hardcover
R3,471
Discovery Miles 34 710
Integral Equations with Difference…
Lev A. Sakhnovich
Hardcover
One-dimensional Linear Singular Integral…
Israel Gohberg, Naum IA. Krupnick, …
Hardcover
R2,394
Discovery Miles 23 940
Calculus for Engineering Students…
Jesus Martin Vaquero, Michael Carr, …
Paperback
R2,162
Discovery Miles 21 620
Recent Progress in Operator Theory…
Israel C. Gohberg, Reinhard Mennicken, …
Hardcover
R2,815
Discovery Miles 28 150
Generalized Radon Transforms And Imaging…
Gaik Ambartsoumian
Hardcover
R2,144
Discovery Miles 21 440
Sobolev Spaces, Their Generalizations…
Mikhail S. Agranovich
Hardcover
R3,453
Discovery Miles 34 530
|