![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Integral equations
This second edition integrates the newly developed methods with classical techniques to give both modern and powerful approaches for solving integral equations. It provides a comprehensive treatment of linear and nonlinear Fredholm and Volterra integral equations of the first and second kinds. The materials are presented in an accessible and straightforward manner to readers, particularly those from non-mathematics backgrounds. Numerous well-explained applications and examples as well as practical exercises are presented to guide readers through the text. Selected applications from mathematics, science and engineering are investigated by using the newly developed methods.This volume consists of nine chapters, pedagogically organized, with six chapters devoted to linear integral equations, two chapters on nonlinear integral equations, and the last chapter on applications. It is intended for scholars and researchers, and can be used for advanced undergraduate and graduate students in applied mathematics, science and engineering.Click here for solutions manual.
This second edition integrates the newly developed methods with classical techniques to give both modern and powerful approaches for solving integral equations. It provides a comprehensive treatment of linear and nonlinear Fredholm and Volterra integral equations of the first and second kinds. The materials are presented in an accessible and straightforward manner to readers, particularly those from non-mathematics backgrounds. Numerous well-explained applications and examples as well as practical exercises are presented to guide readers through the text. Selected applications from mathematics, science and engineering are investigated by using the newly developed methods.This volume consists of nine chapters, pedagogically organized, with six chapters devoted to linear integral equations, two chapters on nonlinear integral equations, and the last chapter on applications. It is intended for scholars and researchers, and can be used for advanced undergraduate and graduate students in applied mathematics, science and engineering.Click here for solutions manual.
The second edition of A First Course in Integral Equations integrates the newly developed methods with classical techniques to give modern and robust approaches for solving integral equations. The manual accompanying this edition contains solutions to all exercises with complete step-by-step details. To interested readers trying to master the concepts and powerful techniques, this manual is highly useful, focusing on the readers' needs and expectations. It contains the same notations used in the textbook, and the solutions are self-explanatory. It is intended for scholars and researchers, and can be used for advanced undergraduate and graduate students in applied mathematics, science and engineering.
Advances in science and technology are driven by the development of rigorous mathematical foundations for the study of both theoretical and experimental models. With certain methodological variations, this type of study always comes down to the application of analytic or computational integration procedures, making such tools indispensible. With a wealth of cutting-edge research in the field, Integral Methods in Science and Engineering: Progress in Numerical and Analytic Techniques provides a detailed portrait of both the construction of theoretical integral techniques and their application to specific problems in science and engineering. The chapters in this volume are based on talks given by well-known researchers at the Twelfth International Conference on Integral Methods in Science and Engineering, July 23-27, 2012, in Porto Alegre, Brazil. They address a broad range of topics, from problems of existence and uniqueness for singular integral equations on domain boundaries to numerical integration via finite and boundary elements, conservation laws, hybrid methods, and other quadrature-related approaches. The contributing authors bring their expertise to bear on a number of topical problems that have to date resisted solution, thereby offering help and guidance to fellow professionals worldwide. Integral Methods in Science and Engineering: Progress in Numerical and Analytic Techniques will be a valuable resource for researchers in applied mathematics, physics, and mechanical and electrical engineering, for graduate students in these disciplines, and for various other professionals who use integration as an essential tool in their work.
The present volume develops the theory of integration in Banach spaces, martingales and UMD spaces, and culminates in a treatment of the Hilbert transform, Littlewood-Paley theory and the vector-valued Mihlin multiplier theorem. Over the past fifteen years, motivated by regularity problems in evolution equations, there has been tremendous progress in the analysis of Banach space-valued functions and processes. The contents of this extensive and powerful toolbox have been mostly scattered around in research papers and lecture notes. Collecting this diverse body of material into a unified and accessible presentation fills a gap in the existing literature. The principal audience that we have in mind consists of researchers who need and use Analysis in Banach Spaces as a tool for studying problems in partial differential equations, harmonic analysis, and stochastic analysis. Self-contained and offering complete proofs, this work is accessible to graduate students and researchers with a background in functional analysis or related areas.
In this volume, we report new results about various theories and methods of integral equation, boundary value problems for partial differential equations and functional equations, and integral operators including singular integral equations, applications of boundary value problems and integral equations to mechanics and physics, numerical methods of integral equations and boundary value problems, theories and methods for inverse problems of mathematical physics, Clifford analysis and related problems.
The origins of Schur analysis lie in a 1917 article by Issai Schur in which he constructed a numerical sequence to correspond to a holomorphic contractive function on the unit disk. These sequences are now known as Schur parameter sequences. Schur analysis has grown significantly since its beginnings in the early twentieth century and now encompasses a wide variety of problems related to several classes of holomorphic functions and their matricial generalizations. These problems include interpolation and moment problems as well as Schur parametrization of particular classes of contractive or nonnegative Hermitian block matrices. This book is primarily devoted to topics related to matrix versions of classical interpolation and moment problems. The major themes include Schur analysis of nonnegative Hermitian block Hankel matrices and the construction of Schur-type algorithms. This book also covers a number of recent developments in orthogonal rational matrix functions, matrix-valued Caratheodory functions and maximal weight solutions for particular matricial moment problems on the unit circle.
This book gives a compact exposition of the fundamentals of the theory of locally convex topological vector spaces. Furthermore it contains a survey of the most important results of a more subtle nature, which cannot be regarded as basic, but knowledge which is useful for understanding applications. Finally, the book explores some of such applications connected with differential calculus and measure theory in infinite-dimensional spaces. These applications are a central aspect of the book, which is why it is different from the wide range of existing texts on topological vector spaces. Overall, this book develops differential and integral calculus on infinite-dimensional locally convex spaces by using methods and techniques of the theory of locally convex spaces. The target readership includes mathematicians and physicists whose research is related to infinite-dimensional analysis.
The Henstock-Kurzweil integral, which is also known as the generalized Riemann integral, arose from a slight modification of the classical Riemann integral more than 50 years ago. This relatively new integral is known to be equivalent to the classical Perron integral; in particular, it includes the powerful Lebesgue integral. This book presents an introduction of the multiple Henstock-Kurzweil integral. Along with the classical results, this book contains some recent developments connected with measures, multiple integration by parts, and multiple Fourier series. The book can be understood with a prerequisite of advanced calculus.
This second of two Exercises in Analysis volumes covers problems in five core topics of mathematical analysis: Function Spaces, Nonlinear and Multivalued Maps, Smooth and Nonsmooth Calculus, Degree Theory and Fixed Point Theory, and Variational and Topological Methods. Each of five topics corresponds to a different chapter with inclusion of the basic theory and accompanying main definitions and results,followed by suitable comments and remarks for better understanding of the material. Exercises/problems are presented for each topic, with solutions available at the end of each chapter. The entire collection of exercises offers a balanced and useful picture for the application surrounding each topic. This nearly encyclopedic coverage of exercises in mathematical analysis is the first of its kind and is accessible to a wide readership. Graduate students will find the collection of problems valuable in preparation for their preliminary or qualifying exams as well as for testing their deeper understanding of the material. Exercises are denoted by degree of difficulty. Instructors teaching courses that include one or all of the above-mentioned topics will find the exercises of great help in course preparation. Researchers in analysis may find this Work useful as a summary of analytic theories published in one accessible volume.
Based on an honors course taught by the author at UC Berkeley, this introduction to undergraduate real analysis gives a different emphasis by stressing the importance of pictures and hard problems. Topics include: a natural construction of the real numbers, four-dimensional visualization, basic point-set topology, function spaces, multivariable calculus via differential forms (leading to a simple proof of the Brouwer Fixed Point Theorem), and a pictorial treatment of Lebesgue theory. Over 150 detailed illustrations elucidate abstract concepts and salient points in proofs. The exposition is informal and relaxed, with many helpful asides, examples, some jokes, and occasional comments from mathematicians, such as Littlewood, Dieudonne, and Osserman. This book thus succeeds in being more comprehensive, more comprehensible, and more enjoyable, than standard introductions to analysis. New to the second edition of Real Mathematical Analysis is a presentation of Lebesgue integration done almost entirely using the undergraph approach of Burkill. Payoffs include: concise picture proofs of the Monotone and Dominated Convergence Theorems, a one-line/one-picture proof of Fubini's theorem from Cavalieri's Principle, and, in many cases, the ability to see an integral result from measure theory. The presentation includes Vitali's Covering Lemma, density points - which are rarely treated in books at this level - and the almost everywhere differentiability of monotone functions. Several new exercises now join a collection of over 500 exercises that pose interesting challenges and introduce special topics to the student keen on mastering this beautiful subject.
Composite materials are widely used in industry and include such well known examples as superconductors and optical fibers. However, modeling these materials is difficult, since they often has different properties at different points. The mathematical theory of homogenization is designed to handle this problem. The theory uses an idealized homogenous material to model a real composite while taking into account the microscopic structure. This introduction to homogenization theory develops the natural framework of the theory with four chapters on variational methods for partial differential equations. It then discusses the homogenization of several kinds of second-order boundary value problems. It devotes separate chapters to the classical examples of stead and non-steady heat equations, the wave equation, and the linearized system of elasticity. It includes numerous illustrations and examples.
A self-contained and probability-oriented introduction to the theory of lattice of partitions, with a unique software implementation that makes our book an ideal introduction to the field A complete and self-contained combinatorial analysis of cumulants and diagram formulae, unique in its genre An introduction to Wiener chaos, and a new combinatorial interpretation of recently proved limit theorems The concept of Wiener chaos generalizes to an infinite-dimensional setting the properties of orthogonal polynomials associated with probability distributions on the real line. It plays a crucial role in modern probability theory, with applications ranging from Malliavin calculus to stochastic differential equations and from probabilistic approximations to mathematical finance. This book is concerned with combinatorial structures arising from the study of chaotic random variables related to infinitely divisible random measures. The combinatorial structures involved are those of partitions of finite sets, over which M bius functions and related inversion formulae are defined. This combinatorial standpoint (which is originally due to Rota and Wallstrom) provides an ideal framework for diagrams, which are graphical devices used to compute moments and cumulants of random variables. Several applications are described, in particular, recent limit theorems for chaotic random variables. An Appendix presents a computer implementation in MATHEMATICA for many of the formulae
This book aims to provide an introduction to the broad and dynamic subject of discrete energy problems and point configurations. Written by leading authorities on the topic, this treatise is designed with the graduate student and further explorers in mind. The presentation includes a chapter of preliminaries and an extensive Appendix that augments a course in Real Analysis and makes the text self-contained. Along with numerous attractive full-color images, the exposition conveys the beauty of the subject and its connection to several branches of mathematics, computational methods, and physical/biological applications. This work is destined to be a valuable research resource for such topics as packing and covering problems, generalizations of the famous Thomson Problem, and classical potential theory in Rd. It features three chapters dealing with point distributions on the sphere, including an extensive treatment of Delsarte-Yudin-Levenshtein linear programming methods for lower bounding energy, a thorough treatment of Cohn-Kumar universality, and a comparison of 'popular methods' for uniformly distributing points on the two-dimensional sphere. Some unique features of the work are its treatment of Gauss-type kernels for periodic energy problems, its asymptotic analysis of minimizing point configurations for non-integrable Riesz potentials (the so-called Poppy-seed bagel theorems), its applications to the generation of non-structured grids of prescribed densities, and its closing chapter on optimal discrete measures for Chebyshev (polarization) problems.
This collection of 24 papers, which encompasses the construction and the qualitative as well as quantitative properties of solutions of Volterra, Fredholm, delay, impulse integral and integro-differential equations in various spaces on bounded as well as unbounded intervals, will conduce and spur further research in this direction.
This book collects significant contributions from the fifth conference on Fractal Geometry and Stochastics held in Tabarz, Germany, in March 2014. The book is divided into five topical sections: geometric measure theory, self-similar fractals and recurrent structures, analysis and algebra on fractals, multifractal theory, and random constructions. Each part starts with a state-of-the-art survey followed by papers covering a specific aspect of the topic. The authors are leading world experts and present their topics comprehensibly and attractively. Both newcomers and specialists in the field will benefit from this book.
This book describes integration and measure theory for readers interested in analysis, engineering, and economics. It gives a systematic account of Riemann-Stieltjes integration and deduces the Lebesgue-Stieltjes measure from the Lebesgue-Stieltjes integral.
This advanced undergraduate textbook is based on a one-semester course on single variable calculus that the author has been teaching at San Diego State University for many years. The aim of this classroom-tested book is to deliver a rigorous discussion of the concepts and theorems that are dealt with informally in the first two semesters of a beginning calculus course. As such, students are expected to gain a deeper understanding of the fundamental concepts of calculus, such as limits (with an emphasis on - definitions), continuity (including an appreciation of the difference between mere pointwise and uniform continuity), the derivative (with rigorous proofs of various versions of L'Hopital's rule) and the Riemann integral (discussing improper integrals in-depth, including the comparison and Dirichlet tests). Success in this course is expected to prepare students for more advanced courses in real and complex analysis and this book will help to accomplish this. The first semester of advanced calculus can be followed by a rigorous course in multivariable calculus and an introductory real analysis course that treats the Lebesgue integral and metric spaces, with special emphasis on Banach and Hilbert spaces.
This is the first book to present a systematic review of applications of the Haar wavelet method for solving Calculus and Structural Mechanics problems. Haar wavelet-based solutions for a wide range of problems, such as various differential and integral equations, fractional equations, optimal control theory, buckling, bending and vibrations of elastic beams are considered. Numerical examples demonstrating the efficiency and accuracy of the Haar method are provided for all solutions.
This monograph gives a state-of-the-art and accessible treatment of a new general higher-dimensional theory of complex dimensions, valid for arbitrary bounded subsets of Euclidean spaces, as well as for their natural generalization, relative fractal drums. It provides a significant extension of the existing theory of zeta functions for fractal strings to fractal sets and arbitrary bounded sets in Euclidean spaces of any dimension. Two new classes of fractal zeta functions are introduced, namely, the distance and tube zeta functions of bounded sets, and their key properties are investigated. The theory is developed step-by-step at a slow pace, and every step is well motivated by numerous examples, historical remarks and comments, relating the objects under investigation to other concepts. Special emphasis is placed on the study of complex dimensions of bounded sets and their connections with the notions of Minkowski content and Minkowski measurability, as well as on fractal tube formulas. It is shown for the first time that essential singularities of fractal zeta functions can naturally emerge for various classes of fractal sets and have a significant geometric effect. The theory developed in this book leads naturally to a new definition of fractality, expressed in terms of the existence of underlying geometric oscillations or, equivalently, in terms of the existence of nonreal complex dimensions. The connections to previous extensive work of the first author and his collaborators on geometric zeta functions of fractal strings are clearly explained. Many concepts are discussed for the first time, making the book a rich source of new thoughts and ideas to be developed further. The book contains a large number of open problems and describes many possible directions for further research. The beginning chapters may be used as a part of a course on fractal geometry. The primary readership is aimed at graduate students and researchers working in Fractal Geometry and other related fields, such as Complex Analysis, Dynamical Systems, Geometric Measure Theory, Harmonic Analysis, Mathematical Physics, Analytic Number Theory and the Spectral Theory of Elliptic Differential Operators. The book should be accessible to nonexperts and newcomers to the field.
This book, based on a selection of talks given at a dedicated meeting in Cortona, Italy, in June 2013, shows the high degree of interaction between a number of fields related to applied sciences. Applied sciences consider situations in which the evolution of a given system over time is observed, and the related models can be formulated in terms of evolution equations (EEs). These equations have been studied intensively in theoretical research and are the source of an enormous number of applications. In this volume, particular attention is given to direct, inverse and control problems for EEs. The book provides an updated overview of the field, revealing its richness and vitality.
This proceedings volume features selected contributions from the conference Positivity X. The field of positivity deals with ordered mathematical structures and their applications. At the biannual series of Positivity conferences, the latest developments in this diverse field are presented. The 2019 edition was no different, with lectures covering a broad spectrum of topics, including vector and Banach lattices and operators on such spaces, abstract stochastic processes in an ordered setting, the theory and applications of positive semi-groups to partial differential equations, Hilbert geometries, positivity in Banach algebras and, in particular, operator algebras, as well as applications to mathematical economics and financial mathematics. The contributions in this book reflect the variety of topics discussed at the conference. They will be of interest to researchers in functional analysis, operator theory, measure and integration theory, operator algebras, and economics. Positivity X was dedicated to the memory of our late colleague and friend, Coenraad Labuschagne. His untimely death in 2018 came as an enormous shock to the Positivity community. He was a prominent figure in the Positivity community and was at the forefront of the recent development of abstract stochastic processes in a vector lattice context.
This book provides a comprehensive examination of preconditioners for boundary element discretisations of first-kind integral equations. Focusing on domain-decomposition-type and multilevel methods, it allows readers to gain a good understanding of the mechanisms and necessary techniques in the analysis of the preconditioners. These techniques are unique for the discretisation of first-kind integral equations since the resulting systems of linear equations are not only large and ill-conditioned, but also dense. The book showcases state-of-the-art preconditioning techniques for boundary integral equations, presenting up-to-date research. It also includes a detailed discussion of Sobolev spaces of fractional orders to familiarise readers with important mathematical tools for the analysis. Furthermore, the concise overview of adaptive BEM, hp-version BEM, and coupling of FEM-BEM provides efficient computational tools for solving practical problems with applications in science and engineering.
The book presents a combination of two topics: one coming from the theory of approximation of functions and integrals by interpolation and quadrature, respectively, and the other from the numerical analysis of operator equations, in particular, of integral and related equations. The text focusses on interpolation and quadrature processes for functions defined on bounded and unbounded intervals and having certain singularities at the endpoints of the interval, as well as on numerical methods for Fredholm integral equations of first and second kind with smooth and weakly singular kernel functions, linear and nonlinear Cauchy singular integral equations, and hypersingular integral equations. The book includes both classic and very recent results and will appeal to graduate students and researchers who want to learn about the approximation of functions and the numerical solution of operator equations, in particular integral equations.
An enormous array of problems encountered by scientists and engineersare based on the design of mathematical models using many different types of ordinary differential, partial differential, integral, and integro-differential equations. Accordingly, the solutions of these equations areof great interest to practitioners and to science in general.Presentinga wealthof cutting-edgeresearchbya diverse group ofexperts in the field, "Integral Methods in Science and Engineering: Computational and Analytic Aspects"gives a vivid picture of both the development of theoretical integral techniques and their use in specific science and engineering problems. This bookwill be valuable for researchers in applied mathematics, physics, and mechanical and electrical engineering. It will likewise be a usefulstudy guideforgraduate students in these disciplines, and for various other professionals who use integration as an essential technique in their work. " |
![]() ![]() You may like...
One-dimensional Linear Singular Integral…
Israel Gohberg, Naum IA. Krupnick, …
Hardcover
R2,512
Discovery Miles 25 120
Operator Theory and Harmonic Analysis…
Alexey N. Karapetyants, Vladislav V. Kravchenko, …
Hardcover
R6,581
Discovery Miles 65 810
New Trends in Applied Harmonic Analysis…
Akram Aldroubi, Carlos Cabrelli, …
Hardcover
R4,267
Discovery Miles 42 670
The Rademacher System in Function Spaces
Sergey V. Astashkin
Hardcover
R4,173
Discovery Miles 41 730
Weighted Polynomial Approximation and…
Peter Junghanns, Giuseppe Mastroianni, …
Hardcover
R4,520
Discovery Miles 45 200
|