![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Integral equations
This book presents an exhaustive study of atomicity from a mathematics perspective in the framework of multi-valued non-additive measure theory. Applications to quantum physics and, more generally, to the fractal theory of the motion, are highlighted. The study details the atomicity problem through key concepts, such as the atom/pseudoatom, atomic/nonatomic measures, and different types of non-additive set-valued multifunctions. Additionally, applications of these concepts are brought to light in the study of the dynamics of complex systems. The first chapter prepares the basics for the next chapters. In the last chapter, applications of atomicity in quantum physics are developed and new concepts, such as the fractal atom are introduced. The mathematical perspective is presented first and the discussion moves on to connect measure theory and quantum physics through quantum measure theory. New avenues of research, such as fractal/multifractal measure theory with potential applications in life sciences, are opened.
The objective of this book is to construct a rigorous mathematical approach to linear hereditary problems of wave propagation theory and demonstrate the efficiency of mathematical theorems in hereditary mechanics. By using both real end complex Tauberian techniques for the Laplace transform, a classification of near-front asymptotics of solutions to considered equations is given-depending on the singularity character of the memory function. The book goes on to derive the description of the behavior of these solutions and demonstrates the importance of nonlinear Laplace transform in linear hereditary elasticity. This book is of undeniable value to researchers working in areas of mathematical physics and related fields.
This contributed volume provides readers with an overview of the most recent developments in the mathematical fields related to fractals, including both original research contributions, as well as surveys from many of the leading experts on modern fractal theory and applications. It is an outgrowth of the Conference of Fractals and Related Fields III, that was held on September 19-25, 2015 in ile de Porquerolles, France. Chapters cover fields related to fractals such as harmonic analysis, multifractal analysis, geometric measure theory, ergodic theory and dynamical systems, probability theory, number theory, wavelets, potential theory, partial differential equations, fractal tilings, combinatorics, and signal and image processing. The book is aimed at pure and applied mathematicians in these areas, as well as other researchers interested in discovering the fractal domain.
This monograph has arisen out of a number of attempts spanning almost five decades to understand how one might examine the evolution of densities in systems whose dynamics are described by differential delay equations. Though the authors have no definitive solution to the problem, they offer this contribution in an attempt to define the problem as they see it, and to sketch out several obvious attempts that have been suggested to solve the problem and which seem to have failed. They hope that by being available to the general mathematical community, they will inspire others to consider-and hopefully solve-the problem. Serious attempts have been made by all of the authors over the years and they have made reference to these where appropriate.
This book is intended for university seniors and graduate students majoring in probability theory or mathematical finance. In the first chapter, results in probability theory are reviewed. Then, it follows a discussion of discrete-time martingales, continuous time square integrable martingales (particularly, continuous martingales of continuous paths), stochastic integrations with respect to continuous local martingales, and stochastic differential equations driven by Brownian motions. In the final chapter, applications to mathematical finance are given. The preliminary knowledge needed by the reader is linear algebra and measure theory. Rigorous proofs are provided for theorems, propositions, and lemmas. In this book, the definition of conditional expectations is slightly different than what is usually found in other textbooks. For the Doob-Meyer decomposition theorem, only square integrable submartingales are considered, and only elementary facts of the square integrable functions are used in the proof. In stochastic differential equations, the Euler-Maruyama approximation is used mainly to prove the uniqueness of martingale problems and the smoothness of solutions of stochastic differential equations.
This contributed volume contains a collection of articles on state-of-the-art developments on the construction of theoretical integral techniques and their application to specific problems in science and engineering. The chapters in this book are based on talks given at the Fifteenth International Conference on Integral Methods in Science and Engineering, held July 16-20, 2018 at the University of Brighton, UK, and are written by internationally recognized researchers. The topics addressed are wide ranging, and include: Asymptotic analysis Boundary-domain integral equations Viscoplastic fluid flow Stationary waves Interior Neumann shape optimization Self-configuring neural networks This collection will be of interest to researchers in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students in these disciplines and other professionals for whom integration is an essential tool.
Differential and integral equations involve important mathematical
techniques, and as such will be encountered by mathematicians, and
physical and social scientists, in their undergraduate courses.
This text provides a clear, comprehensive guide to first- and
second-order ordinary and partial
This IMA Volume in Mathematics and its Applications QUASICLASSICAL METHODS is based on the proceedings of a very successful one-week workshop with the same title, which was an integral part of the 1994-1995 IMA program on "Waves and Scattering." We would like to thank Jeffrey Rauch and Barry Simon for their excellent work as organizers of the meeting. We also take this opportunity to thank the National Science Foun dation (NSF), the Army Research Office (ARO) and the Office of Naval Research (ONR), whose financial support made the workshop possible. A vner Friedman Robert Gulliver v PREFACE There are a large number of problems where qualitative features of a partial differential equation in an appropriate regime are determined by the behavior of an associated ordinary differential equation. The example which gives the area its name is the limit of quantum mechanical Hamil tonians (Schrodinger operators) as Planck's constant h goes to zero, which is determined by the corresponding classical mechanical system. A sec ond example is linear wave equations with highly oscillatory initial data. The solutions are described by geometric optics whose centerpiece are rays which are solutions of ordinary differential equations analogous to the clas sical mechanics equations in the example above. Much recent work has concerned with understanding terms beyond the leading term determined by the quasi classical limit. Two examples of this involve Weyl asymptotics and the large-Z limit of atomic Hamiltonians, both areas of current research."
This book contains plenary lectures given at the International Conference on Mathematical and Computational Modeling, Approximation and Simulation, dealing with three very different problems: reduction of Runge and Gibbs phenomena, difficulties arising when studying models that depend on the highly nonlinear behaviour of a system of PDEs, and data fitting with truncated hierarchical B-splines for the adaptive reconstruction of industrial models. The book includes nine contributions, mostly related to quasi-interpolation. This is a topic that continues to register a high level of interest, both for those working in the field of approximation theory and for those interested in its use in a practical context. Two chapters address the construction of quasi-interpolants, and three others focus on the use of quasi-interpolation in solving integral equations. The remaining four concern a problem related to the heat diffusion equation, new results on the notion of convexity in probabilistic metric spaces (which are applied to the study of the existence and uniqueness of the solution of a Volterra equation), the use of smoothing splines to address an economic problem and, finally, the analysis of poverty measures, which is a topic of increased interest to society. The book is addressed to researchers interested in Applied Mathematics, with particular reference to the aforementioned topics.
This monograph offers a self-contained introduction to pseudodifferential operators and wavelets over real and p-adic fields. Aimed at graduate students and researchers interested in harmonic analysis over local fields, the topics covered in this book include pseudodifferential operators of principal type and of variable order, semilinear degenerate pseudodifferential boundary value problems (BVPs), non-classical pseudodifferential BVPs, wavelets and Hardy spaces, wavelet integral operators, and wavelet solutions to Cauchy problems over the real field and the p-adic field.
The 2nd edition of this book is essentially an extended version of the 1st and provides a very sound overview of the most important special functions of Fractional Calculus. It has been updated with material from many recent papers and includes several surveys of important results known before the publication of the 1st edition, but not covered there. As a result of researchers' and scientists' increasing interest in pure as well as applied mathematics in non-conventional models, particularly those using fractional calculus, Mittag-Leffler functions have caught the interest of the scientific community. Focusing on the theory of Mittag-Leffler functions, this volume offers a self-contained, comprehensive treatment, ranging from rather elementary matters to the latest research results. In addition to the theory the authors devote some sections of the work to applications, treating various situations and processes in viscoelasticity, physics, hydrodynamics, diffusion and wave phenomena, as well as stochastics. In particular, the Mittag-Leffler functions make it possible to describe phenomena in processes that progress or decay too slowly to be represented by classical functions like the exponential function and related special functions. The book is intended for a broad audience, comprising graduate students, university instructors and scientists in the field of pure and applied mathematics, as well as researchers in applied sciences like mathematical physics, theoretical chemistry, bio-mathematics, control theory and several other related areas.
This book aims to put strong reasonable mathematical senses in notions of objectivity and subjectivity for consistent estimations in a Polish group by using the concept of Haar null sets in the corresponding group. This new approach - naturally dividing the class of all consistent estimates of an unknown parameter in a Polish group into disjoint classes of subjective and objective estimates - helps the reader to clarify some conjectures arising in the criticism of null hypothesis significance testing. The book also acquaints readers with the theory of infinite-dimensional Monte Carlo integration recently developed for estimation of the value of infinite-dimensional Riemann integrals over infinite-dimensional rectangles. The book is addressed both to graduate students and to researchers active in the fields of analysis, measure theory, and mathematical statistics.
This contributed volume collects papers based on courses and talks given at the 2017 CIMPA school Harmonic Analysis, Geometric Measure Theory and Applications, which took place at the University of Buenos Aires in August 2017. These articles highlight recent breakthroughs in both harmonic analysis and geometric measure theory, particularly focusing on their impact on image and signal processing. The wide range of expertise present in these articles will help readers contextualize how these breakthroughs have been instrumental in resolving deep theoretical problems. Some topics covered include: Gabor frames Falconer distance problem Hausdorff dimension Sparse inequalities Fractional Brownian motion Fourier analysis in geometric measure theory This volume is ideal for applied and pure mathematicians interested in the areas of image and signal processing. Electrical engineers and statisticians studying these fields will also find this to be a valuable resource.
Introduction to integration provides a unified account of integration theory, giving a practical guide to the Lebesgue integral and its uses, with a wealth of illustrative examples and exercises. The book begins with a simplified Lebesgue-style integral (in lieu of the more traditional Riemann integral), intended for a first course in integration. This suffices for elementary applications, and serves as an introduction to the core of the book. The final chapters present selected applications, mostly drawn from Fourier analysis. The emphasis throughout is on integrable functions rather than on measure. The book is designed primarily as an undergraduate or introductory graduate textbook. It is similar in style and level to Priestley's Introduction to complex analysis, for which it provides a companion volume, and is aimed at both pure and applied mathematicians. Prerequisites are the rudiments of integral calculus and a first course in real analysis.
This book provides cutting-edge results on the existence of multiple positive periodic solutions of first-order functional differential equations. It demonstrates how the Leggett-Williams fixed-point theorem can be applied to study the existence of two or three positive periodic solutions of functional differential equations with real-world applications, particularly with regard to the Lasota-Wazewska model, the Hematopoiesis model, the Nicholsons Blowflies model, and some models with Allee effects. Many interesting sufficient conditions are given for the dynamics that include nonlinear characteristics exhibited by population models. The last chapter provides results related to the global appeal of solutions to the models considered in the earlier chapters. The techniques used in this book can be easily understood by anyone with a basic knowledge of analysis. This book offers a valuable reference guide for students and researchers in the field of differential equations with applications to biology, ecology, and the environment.
This book combines theory, applications, and numerical methods, and covers each of these fields with the same weight. In order to make the book accessible to mathematicians, physicists, and engineers alike, the author has made it as self-contained as possible, requiring only a solid foundation in differential and integral calculus. The functional analysis which is necessary for an adequate treatment of the theory and the numerical solution of integral equations is developed within the book itself. Problems are included at the end of each chapter. For this third edition in order to make the introduction to the basic functional analytic tools more complete the Hahn Banach extension theorem and the Banach open mapping theorem are now included in the text. The treatment of boundary value problems in potential theory has been extended by a more complete discussion of integral equations of the first kind in the classical Holder space setting and of both integral equations of the first and second kind in the contemporary Sobolev space setting. In the numerical solution part of the book, the author included a new collocation method for two-dimensional hypersingular boundary integral equations and a collocation method for the three-dimensional Lippmann-Schwinger equation. The final chapter of the book on inverse boundary value problems for the Laplace equation has been largely rewritten with special attention to the trilogy of decomposition, iterative and sampling methods Reviews of earlier editions: "This book is an excellent introductory text for students, scientists, and engineers who want to learn the basic theory of linear integral equations and their numerical solution." (Math. Reviews, 2000) "This is a good introductory text book on linear integral equations. It contains almost all the topics necessary for a student. The presentation of the subject matter is lucid, clear and in the proper modern framework without being too abstract." (ZbMath, 1999)"
This book contains contributions from the invited speakers to the fifth S.E.R.C Summer School in Numerical Analysis, which was held at Lancaster University from 19th to 31st July, 1992. The expositions were at a level which could be understood by post-graduate research students, yet would be advanced enough to stimulate established researchers. The book should therefore be useful to a wide class of readers. The topics which are covered include some of the most important areas of current research in numerical analysis. Part I deals with the use of parrallel computers, both for solving large sets of linear equations and calculating the eigensystems of large matrices. Such problems arise from the discretization of partial differential equations. Aspects of the solution of such equations are dealt with in Part II. These include the preconditioning of elliptic problems, the study of semi-conductors, and description of recent methods for the solution of hydrodynamic problems. The contributors are: Jesse L. Barlow, Pennsylvania State University; Professor Jack Dongarra, Oak Ridge National Library; Professor Howard C. Elman, Institute for Advanced Computer Studies, Maryland; Professor Randolph E. Bank, University of California; Professor J.W. Jerome, Northwestern University, and Professor Maurizio Pandolfi, Politecnico di Torino, Italy.
This book deals with the study of sequence spaces, matrix transformations, measures of noncompactness and their various applications. The notion of measure of noncompactness is one of the most useful ones available and has many applications. The book discusses some of the existence results for various types of differential and integral equations with the help of measures of noncompactness; in particular, the Hausdorff measure of noncompactness has been applied to obtain necessary and sufficient conditions for matrix operators between BK spaces to be compact operators. The book consists of eight self-contained chapters. Chapter 1 discusses the theory of FK spaces and Chapter 2 various duals of sequence spaces, which are used to characterize the matrix classes between these sequence spaces (FK and BK spaces) in Chapters 3 and 4. Chapter 5 studies the notion of a measure of noncompactness and its properties. The techniques associated with measures of noncompactness are applied to characterize the compact matrix operators in Chapters 6. In Chapters 7 and 8, some of the existence results are discussed for various types of differential and integral equations, which are obtained with the help of argumentations based on compactness conditions.
This volume is a selection of written notes corresponding to courses taught at the CIMPA School: "New Trends in Applied Harmonic Analysis: Sparse Representations, Compressed Sensing and Multifractal Analysis". New interactions between harmonic analysis and signal and image processing have seen striking development in the last 10 years, and several technological deadlocks have been solved through the resolution of deep theoretical problems in harmonic analysis. New Trends in Applied Harmonic Analysis focuses on two particularly active areas that are representative of such advances: multifractal analysis, and sparse representation and compressed sensing. The contributions are written by leaders in these areas, and cover both theoretical aspects and applications. This work should prove useful not only to PhD students and postdocs in mathematics and signal and image processing, but also to researchers working in related topics.
This monograph presents the summability of higher dimensional Fourier series, and generalizes the concept of Lebesgue points. Focusing on Fejer and Cesaro summability, as well as theta-summation, readers will become more familiar with a wide variety of summability methods. Within the theory of higher dimensional summability of Fourier series, the book also provides a much-needed simple proof of Lebesgue's theorem, filling a gap in the literature. Recent results and real-world applications are highlighted as well, making this a timely resource. The book is structured into four chapters, prioritizing clarity throughout. Chapter One covers basic results from the one-dimensional Fourier series, and offers a clear proof of the Lebesgue theorem. In Chapter Two, convergence and boundedness results for the lq-summability are presented. The restricted and unrestricted rectangular summability are provided in Chapter Three, as well as the sufficient and necessary condition for the norm convergence of the rectangular theta-means. Chapter Four then introduces six types of Lebesgue points for higher dimensional functions. Lebesgue Points and Summability of Higher Dimensional Fourier Series will appeal to researchers working in mathematical analysis, particularly those interested in Fourier and harmonic analysis. Researchers in applied fields will also find this useful.
Complexity theory has become an increasingly important theme in mathematical research. This book deals with an approximate solution of differential or integral equations by algorithms using incomplete information. This situation often arises for equations of the form Lu = f where f is some function defined on a domain and L is a differential operator. We do not have complete information about f. For instance, we might only know its value at a finite number of points in the domain, or the values of its inner products with a finite set of known functions. Consequently the best that can be hoped for is to solve the equation to within a given accuracy at minimal cost or complexity. In this book, the theory of the complexity of the solution to differential and integral equations is developed. The relationship between the worst case setting and other (sometimes more tractable) related settings, such as the average case, probabilistic, asymptotic, and randomized settings, is also discussed. The author determines the inherent complexity of the problem and finds optimal algorithms (in the sense of having minimal cost). Furthermore, he studies to what extent standard algorithms (such as finite element methods for elliptic problems) are optimal. This approach is discussed in depth in the context of two-point boundary value problems, linear elliptic partial differential equations, integral equations, ordinary differential equations, and ill-posed problems. As a result, this volume should appeal to mathematicians and numerical analysts working on the approximate solution of differential and integral equations, as well as to complexity theorists addressing related questions in this area.
The space C(X) of all continuous functions on a compact space X carries the structure of a normed vector space, an algebra and a lattice. On the one hand we study the relations between these structures and the topology of X, on the other hand we discuss a number of classical results according to which an algebra or a vector lattice can be represented as a C(X). Various applications of these theorems are given.Some attention is devoted to related theorems, e.g. the Stone Theorem for Boolean algebras and the Riesz Representation Theorem.The book is functional analytic in character. It does not presuppose much knowledge of functional analysis; it contains introductions into subjects such as the weak topology, vector lattices and (some) integration theory.
The theory of dynamic equations has many interesting applications in control theory, mathematical economics, mathematical biology, engineering and technology. In some cases, there exists uncertainty, ambiguity, or vague factors in such problems, and fuzzy theory and interval analysis are powerful tools for modeling these equations on time scales. The aim of this book is to present a systematic account of recent developments; describe the current state of the useful theory; show the essential unity achieved in the theory fuzzy dynamic equations, dynamic inclusions and optimal control problems on time scales; and initiate several new extensions to other types of fuzzy dynamic systems and dynamic inclusions. The material is presented in a highly readable, mathematically solid format. Many practical problems are illustrated, displaying a wide variety of solution techniques. The book is primarily intended for senior undergraduate students and beginning graduate students of engineering and science courses. Students in mathematical and physical sciences will find many sections of direct relevance.
This book focuses on developments in complex dynamical systems and geometric function theory over the past decade, showing strong links with other areas of mathematics and the natural sciences. Traditional methods and approaches surface in physics and in the life and engineering sciences with increasing frequency - the Schramm-Loewner evolution, Laplacian growth, and quadratic differentials are just a few typical examples. This book provides a representative overview of these processes and collects open problems in the various areas, while at the same time showing where and how each particular topic evolves. This volume is dedicated to the memory of Alexander Vasiliev.
Providing the mathematical background required for the study of fractal topics, this book deals with integration in the modern sense, together with mathematical probability. The emphasis is on the particular results that aid the discussion of fractals, and follows Edgars Measure, Topology, and Fractal Geometry. With exercises throughout, this is and ideal text for beginning graduate students both in the classroom and for self-study. |
You may like...
FOCAPD-19/Proceedings of the 9th…
Salvador Garcia-Munoz, Carl D. Laird, …
Hardcover
R10,989
Discovery Miles 109 890
Organizational and Technological…
Farley Simon Nobre, Andrew M. Tobias, …
Hardcover
R4,169
Discovery Miles 41 690
Knowledge Intensive CAD - Volume 1
Martti Mantyla, Susan Finger, …
Hardcover
R4,197
Discovery Miles 41 970
Large-scale Graph Analysis: System…
Yingxia Shao, Bin Cui, …
Hardcover
R3,984
Discovery Miles 39 840
Handbook of Expert Systems Applications…
Anil Mital, Sundararaman Anand
Hardcover
R2,445
Discovery Miles 24 450
|