![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Integral equations
This textbook provides a thorough introduction to measure and integration theory, fundamental topics of advanced mathematical analysis. Proceeding at a leisurely, student-friendly pace, the authors begin by recalling elementary notions of real analysis before proceeding to measure theory and Lebesgue integration. Further chapters cover Fourier series, differentiation, modes of convergence, and product measures. Noteworthy topics discussed in the text include Lp spaces, the Radon-Nikody m Theorem, signed measures, the Riesz Representation Theorem, and the Tonelli and Fubini Theorems. This textbook, based on extensive teaching experience, is written for senior undergraduate and beginning graduate students in mathematics. With each topic carefully motivated and hints to more than 300 exercises, it is the ideal companion for self-study or use alongside lecture courses.
This book provides a detailed study of recent results in metric fixed point theory and presents several applications in nonlinear analysis, including matrix equations, integral equations and polynomial approximations. Each chapter is accompanied by basic definitions, mathematical preliminaries and proof of the main results. Divided into ten chapters, it discusses topics such as the Banach contraction principle and its converse; Ran-Reurings fixed point theorem with applications; the existence of fixed points for the class of - contractive mappings with applications to quadratic integral equations; recent results on fixed point theory for cyclic mappings with applications to the study of functional equations; the generalization of the Banach fixed point theorem on Branciari metric spaces; the existence of fixed points for a certain class of mappings satisfying an implicit contraction; fixed point results for a class of mappings satisfying a certain contraction involving extended simulation functions; the solvability of a coupled fixed point problem under a finite number of equality constraints; the concept of generalized metric spaces, for which the authors extend some well-known fixed point results; and a new fixed point theorem that helps in establishing a Kelisky-Rivlin type result for q-Bernstein polynomials and modified q-Bernstein polynomials. The book is a valuable resource for a wide audience, including graduate students and researchers.
This book offers a comprehensive introduction to the theory of linear and nonlinear Volterra integral equations (VIEs), ranging from Volterra's fundamental contributions and the resulting classical theory to more recent developments that include Volterra functional integral equations with various kinds of delays, VIEs with highly oscillatory kernels, and VIEs with non-compact operators. It will act as a 'stepping stone' to the literature on the advanced theory of VIEs, bringing the reader to the current state of the art in the theory. Each chapter contains a large number of exercises, extending from routine problems illustrating or complementing the theory to challenging open research problems. The increasingly important role of VIEs in the mathematical modelling of phenomena where memory effects play a key role is illustrated with some 30 concrete examples, and the notes at the end of each chapter feature complementary references as a guide to further reading.
This book touches upon various aspects of a very interesting, and growing in popularity category of models of dynamical systems. These are the so-called fractional-order systems. Such models are not only relevant for many fields of science and technology, but may also find numerous applications in other disciplines applying the mathematical modelling tools. Thus, the book is intended for a very wide audience of professionals who want to expand their knowledge of systems modelling and its applications. The book includes the selections of papers presented at the International Conference on Fractional Calculus and its Applications organized by the Warsaw University of Technology and was held online on 6-8 September 2021. The International Conference on Fractional Calculus and its Applications (ICFDA) has an almost twenty years history. It started in Bordeaux (France) in 2004, followed by Porto (Portugal) 2006, Istanbul (Turkey) 2008, Badajoz (Spain) 2010, Nanjing (China) 2012, Catania (Italy) 2014, Novi Sad (Serbia) 2016, Amman (Jordan) 2018. Next ICFDA was planned in 2020 in Warsaw (Poland), but COVID-19 pandemic shifted it to 6-8 September 2021. Hence, the organizers were forced to change the form of the conference to the online one. In the volume twenty eight high-quality research papers presented during the ICFDA 2021 eleven Regular Sessions with an additional online Discussion Session are presented. The presented papers are scientifically inspiring, leading to new fruitful ideas. They cover a very broad range of many disciplines. Nowadays, and especially in such a subject as fractional calculus, it is very difficult to assign papers to specific scientific areas. So, many of the papers included have an interdisciplinary character.
Originally published in 1926, this book was written to provide mathematical and scientific students with an introduction to the subject of integral calculus. The text was largely planned around the syllabus for the Higher Certificate Examination. A short historical survey is included. This book will be of value to anyone with an interest in integral calculus, mathematics and the history of education.
Originally published in 1936, this book was written with the intention of preparing candidates for the Higher Certificate Examinations. The text was created to bridge the gap between introductions to differential and integral calculus and advanced textbooks on the subject. This volume will be of value to anyone with an interest in differential and integral calculus, mathematics and the history of education.
Originally published in 1939, this book forms the first part of a two-volume series on the mathematics required for the examinations of the Institute of Actuaries, focusing on elementary differential and integral calculus. Miscellaneous examples are included at the end of the text. This book will be of value to anyone with an interest in actuarial science and mathematics.
The choice of examples used in this text clearly illustrate its use for a one-year graduate course. The material to be presented in the classroom constitutes a little more than half the text, while the rest of the text provides background, offers different routes that could be pursued in the classroom, as well as additional material that is appropriate for self-study. Of particular interest is a presentation of the major central limit theorems via Steins method either prior to or alternative to a characteristic function presentation. Additionally, there is considerable emphasis placed on the quantile function as well as the distribution function, with both the bootstrap and trimming presented. The section on martingales covers censored data martingales.
Exercises in Analysis will be published in two volumes. This first volume covers problems in five core topics of mathematical analysis: metric spaces; topological spaces; measure, integration and Martingales; measure and topology and functional analysis. Each of five topics correspond to a different chapter with inclusion of the basic theory and accompanying main definitions and results, followed by suitable comments and remarks for better understanding of the material. At least 170 exercises/problems are presented for each topic, with solutions available at the end of each chapter. The entire collection of exercises offers a balanced and useful picture for the application surrounding each topic. This nearly encyclopedic coverage of exercises in mathematical analysis is the first of its kind and is accessible to a wide readership. Graduate students will find the collection of problems valuable in preparation for their preliminary or qualifying exams as well as for testing their deeper understanding of the material. Exercises are denoted by degree of difficulty. Instructors teaching courses that include one or all of the above-mentioned topics will find the exercises of great help in course preparation. Researchers in analysis may find this Work useful as a summary of analytic theories published in one accessible volume.
This book, based on a selection of talks given at a dedicated meeting in Cortona, Italy, in June 2013, shows the high degree of interaction between a number of fields related to applied sciences. Applied sciences consider situations in which the evolution of a given system over time is observed, and the related models can be formulated in terms of evolution equations (EEs). These equations have been studied intensively in theoretical research and are the source of an enormous number of applications. In this volume, particular attention is given to direct, inverse and control problems for EEs. The book provides an updated overview of the field, revealing its richness and vitality.
This book collects significant contributions from the fifth conference on Fractal Geometry and Stochastics held in Tabarz, Germany, in March 2014. The book is divided into five topical sections: geometric measure theory, self-similar fractals and recurrent structures, analysis and algebra on fractals, multifractal theory, and random constructions. Each part starts with a state-of-the-art survey followed by papers covering a specific aspect of the topic. The authors are leading world experts and present their topics comprehensibly and attractively. Both newcomers and specialists in the field will benefit from this book.
This book, which is based on several courses of lectures given by the author at the Independent University of Moscow, is devoted to Sobolev-type spaces and boundary value problems for linear elliptic partial differential equations. Its main focus is on problems in non-smooth (Lipschitz) domains for strongly elliptic systems. The author, who is a prominent expert in the theory of linear partial differential equations, spectral theory and pseudodifferential operators, has included his own very recent findings in the present book. The book is well suited as a modern graduate textbook, utilizing a thorough and clear format that strikes a good balance between the choice of material and the style of exposition. It can be used both as an introduction to recent advances in elliptic equations and boundary value problems and as a valuable survey and reference work. It also includes a good deal of new and extremely useful material not available in standard textbooks to date. Graduate and post-graduate students, as well as specialists working in the fields of partial differential equations, functional analysis, operator theory and mathematical physics will find this book particularly valuable.
A Guide to the Evaluation of Integrals Special Integrals of Gradshetyn and Ryzhik: the Proofs provides self-contained proofs of a variety of entries in the frequently used table of integrals by I.S. Gradshteyn and I.M. Ryzhik. The book gives the most elementary arguments possible and uses Mathematica (R) to verify the formulas. You will discover the beauty, patterns, and unexpected connections behind the formulas. Volume II collects 14 papers from Revista Scientia covering elliptic integrals, the Riemann zeta function, the error function, hypergeometric and hyperbolic functions, Bessel-K functions, logarithms and rational functions, polylogarithm functions, the exponential integral, and Whittaker functions. Many entries have a variety of proofs that can be evaluated using a symbolic language or point to the development of a new algorithm.
Many results, both from semi group theory itself and from the applied sciences, are phrased in discipline-specific languages and hence are hardly known to a broader community. This volume contains a selection of lectures presented at a conference that was organised as a forum for all mathematicians using semi group theory to learn what is happening outside their own field of research. The collection will help to establish a number of new links between various sub-disciplines of semigroup theory, stochastic processes, differential equations and the applied fields. The theory of semigroups of operators is a well-developed branch of functional analysis. Its foundations were laid at the beginning of the 20th century, while the fundamental generation theorem of Hille and Yosida dates back to the forties. The theory was, from the very beginning, designed as a universal language for partial differential equations and stochastic processes, but at the same time it started to live as an independent branch of operator theory. Nowadays, it still has the same distinctive flavour: it develops rapidly by posing new 'internal' questions and in answering them, discovering new methods that can be used in applications. On the other hand, it is influenced by questions from PDEs and stochastic processes as well as from applied sciences such as mathematical biology and optimal control, and thus it continually gathers a new momentum. Researchers and postgraduate students working in operator theory, partial differential equations, probability and stochastic processes, analytical methods in biology and other natural sciences, optimization and optimal control will find this volume useful.
Reaction-diffusion theory is a topic which has developed rapidly over the last thirty years, particularly with regards to applications in chemistry and life sciences. Of particular importance is the analysis of semi-linear parabolic PDEs. This monograph provides a general approach to the study of semi-linear parabolic equations when the nonlinearity, while failing to be Lipschitz continuous, is Hoelder and/or upper Lipschitz continuous, a scenario that is not well studied, despite occurring often in models. The text presents new existence, uniqueness and continuous dependence results, leading to global and uniformly global well-posedness results (in the sense of Hadamard). Extensions of classical maximum/minimum principles, comparison theorems and derivative (Schauder-type) estimates are developed and employed. Detailed specific applications are presented in the later stages of the monograph. Requiring only a solid background in real analysis, this book is suitable for researchers in all areas of study involving semi-linear parabolic PDEs.
This volume collects thirteen expository or survey articles on topics including Fractal Geometry, Analysis of Fractals, Multifractal Analysis, Ergodic Theory and Dynamical Systems, Probability and Stochastic Analysis, written by the leading experts in their respective fields. The articles are based on papers presented at the International Conference on Advances on Fractals and Related Topics, held on December 10-14, 2012 at the Chinese University of Hong Kong. The volume offers insights into a number of exciting, cutting-edge developments in the area of fractals, which has close ties to and applications in other areas such as analysis, geometry, number theory, probability and mathematical physics.
This second of two Exercises in Analysis volumes covers problems in five core topics of mathematical analysis: Function Spaces, Nonlinear and Multivalued Maps, Smooth and Nonsmooth Calculus, Degree Theory and Fixed Point Theory, and Variational and Topological Methods. Each of five topics corresponds to a different chapter with inclusion of the basic theory and accompanying main definitions and results,followed by suitable comments and remarks for better understanding of the material. Exercises/problems are presented for each topic, with solutions available at the end of each chapter. The entire collection of exercises offers a balanced and useful picture for the application surrounding each topic. This nearly encyclopedic coverage of exercises in mathematical analysis is the first of its kind and is accessible to a wide readership. Graduate students will find the collection of problems valuable in preparation for their preliminary or qualifying exams as well as for testing their deeper understanding of the material. Exercises are denoted by degree of difficulty. Instructors teaching courses that include one or all of the above-mentioned topics will find the exercises of great help in course preparation. Researchers in analysis may find this Work useful as a summary of analytic theories published in one accessible volume.
This book collects significant contributions from the fifth conference on Fractal Geometry and Stochastics held in Tabarz, Germany, in March 2014. The book is divided into five topical sections: geometric measure theory, self-similar fractals and recurrent structures, analysis and algebra on fractals, multifractal theory, and random constructions. Each part starts with a state-of-the-art survey followed by papers covering a specific aspect of the topic. The authors are leading world experts and present their topics comprehensibly and attractively. Both newcomers and specialists in the field will benefit from this book.
This book provides an introduction to age-structured population modeling which emphasizes the connection between mathematical theory and underlying biological assumptions. Through the rigorous development of the linear theory and the nonlinear theory alongside numerics, the authors explore classical equations that describe the dynamics of certain ecological systems. Modeling aspects are discussed to show how relevant problems in the fields of demography, ecology and epidemiology can be formulated and treated within the theory. In particular, the book presents extensions of age-structured modeling to the spread of diseases and epidemics while also addressing the issue of regularity of solutions, the asymptotic behavior of solutions, and numerical approximation. With sections on transmission models, non-autonomous models and global dynamics, this book fills a gap in the literature on theoretical population dynamics. The Basic Approach to Age-Structured Population Dynamics will appeal to graduate students and researchers in mathematical biology, epidemiology and demography who are interested in the systematic presentation of relevant models and mathematical methods.
The recent appearance of wavelets as a new computational tool in applied mathematics has given a new impetus to the field of numerical analysis of Fredholm integral equations. This book gives an account of the state of the art in the study of fast multiscale methods for solving these equations based on wavelets. The authors begin by introducing essential concepts and describing conventional numerical methods. They then develop fast algorithms and apply these to solving linear, nonlinear Fredholm integral equations of the second kind, ill-posed integral equations of the first kind and eigen-problems of compact integral operators. Theorems of functional analysis used throughout the book are summarised in the appendix. The book is an essential reference for practitioners wishing to use the new techniques. It may also be used as a text, with the first five chapters forming the basis of a one-semester course for advanced undergraduates or beginning graduates.
This book provides a comprehensive and timely report in the area of non-additive measures and integrals. It is based on a panel session on fuzzy measures, fuzzy integrals and aggregation operators held during the 9th International Conference on Modeling Decisions for Artificial Intelligence (MDAI 2012) in Girona, Spain, November 21-23, 2012. The book complements the MDAI 2012 proceedings book, published in Lecture Notes in Computer Science (LNCS) in 2012. The individual chapters, written by key researchers in the field, cover fundamental concepts and important definitions (e.g. the Sugeno integral, definition of entropy for non-additive measures) as well some important applications (e.g. to economics and game theory) of non-additive measures and integrals. The book addresses students, researchers and practitioners working at the forefront of their field. Â
This book describes mathematical techniques for integral transforms in a detailed but concise manner. The techniques are subsequently applied to the standard partial differential equations, such as the Laplace equation, the wave equation and elasticity equations. Green’s functions for beams, plates and acoustic media are also shown, along with their mathematical derivations. The Cagniard-de Hoop method for double inversion is described in detail and 2D and 3D elastodynamic problems are treated in full. This new edition explains in detail how to introduce the branch cut for the multi-valued square root function. Further, an exact closed form Green’s function for torsional waves is presented, as well as an application technique of the complex integral, which includes the square root function and an application technique of the complex integral.
Neural field theory has a long-standing tradition in the mathematical and computational neurosciences. Beginning almost 50 years ago with seminal work by Griffiths and culminating in the 1970ties with the models of Wilson and Cowan, Nunez and Amari, this important research area experienced a renaissance during the 1990ties by the groups of Ermentrout, Robinson, Bressloff, Wright and Haken. Since then, much progress has been made in both, the development of mathematical and numerical techniques and in physiological refinement und understanding. In contrast to large-scale neural network models described by huge connectivity matrices that are computationally expensive in numerical simulations, neural field models described by connectivity kernels allow for analytical treatment by means of methods from functional analysis. Thus, a number of rigorous results on the existence of bump and wave solutions or on inverse kernel construction problems are nowadays available. Moreover, neural fields provide an important interface for the coupling of neural activity to experimentally observable data, such as the electroencephalogram (EEG) or functional magnetic resonance imaging (fMRI). And finally, neural fields over rather abstract feature spaces, also called dynamic fields, found successful applications in the cognitive sciences and in robotics. Up to now, research results in neural field theory have been disseminated across a number of distinct journals from mathematics, computational neuroscience, biophysics, cognitive science and others. There is no comprehensive collection of results or reviews available yet. With our proposed book Neural Field Theory, we aim at filling this gap in the market. We received consent from some of the leading scientists in the field, who are willing to write contributions for the book, among them are two of the founding-fathers of neural field theory: Shun-ichi Amari and Jack Cowan.
This is a monograph devoted to recent research and results on dynamic inequalities on time scales. The study of dynamic inequalities on time scales has been covered extensively in the literature in recent years and has now become a major sub-field in pure and applied mathematics. In particular, this book will cover recent results on integral inequalities, including Young's inequality, Jensen's inequality, Holder's inequality, Minkowski's inequality, Steffensen's inequality, Hermite-Hadamard inequality and Cebysv's inequality. Opial type inequalities on time scales and their extensions with weighted functions, Lyapunov type inequalities, Halanay type inequalities for dynamic equations on time scales, and Wirtinger type inequalities on time scales and their extensions will also be discussed here in detail.
Mathematical models of deformation of elastic plates are used by applied mathematicians and engineers in connection with a wide range of practical applications, from microchip production to the construction of skyscrapers and aircraft. This book employs two important analytic techniques to solve the fundamental boundary value problems for the theory of plates with transverse shear deformation, which offers a more complete picture of the physical process of bending than Kirchhoff's classical one. The first method transfers the ellipticity of the governing system to the boundary, leading to singular integral equations on the contour of the domain. These equations, established on the basis of the properties of suitable layer potentials, are then solved in spaces of smooth (Hoelder continuous and Hoelder continuously differentiable) functions. The second technique rewrites the differential system in terms of complex variables and fully integrates it, expressing the solution as a combination of complex analytic potentials. The last chapter develops a generalized Fourier series method closely connected with the structure of the system, which can be used to compute approximate solutions. The numerical results generated as an illustration for the interior Dirichlet problem are accompanied by remarks regarding the efficiency and accuracy of the procedure. The presentation of the material is detailed and self-contained, making Mathematical Methods for Elastic Plates accessible to researchers and graduate students with a basic knowledge of advanced calculus. |
You may like...
One-dimensional Linear Singular Integral…
Israel Gohberg, Naum IA. Krupnick, …
Hardcover
R2,394
Discovery Miles 23 940
Generalized Radon Transforms And Imaging…
Gaik Ambartsoumian
Hardcover
R2,144
Discovery Miles 21 440
Ostrowski Type Inequalities and…
Sever S. Dragomir, Themistocles Rassias
Hardcover
R2,922
Discovery Miles 29 220
Existence Theory for Nonlinear Integral…
Donal O'Regan, Maria Meehan
Hardcover
R1,530
Discovery Miles 15 300
Local Fractional Integral Transforms and…
Xiaojun Yang, Dumitru Baleanu, …
Hardcover
R1,806
Discovery Miles 18 060
Integral Equations with Difference…
Lev A. Sakhnovich
Hardcover
|