Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Integral equations
The monograph presents some of the authors' recent and original results concerning boundedness and compactness problems in Banach function spaces both for classical operators and integral transforms defined, generally speaking, on nonhomogeneous spaces. Itfocuses onintegral operators naturally arising in boundary value problems for PDE, the spectral theory of differential operators, continuum and quantum mechanics, stochastic processes etc. The book may be considered as a systematic and detailed analysis of a large class of specific integral operators from the boundedness and compactness point of view. A characteristic feature of the monograph is that most of the statements proved here have the form of criteria. These criteria enable us, for example, togive var ious explicit examples of pairs of weighted Banach function spaces governing boundedness/compactness of a wide class of integral operators. The book has two main parts. The first part, consisting of Chapters 1-5, covers theinvestigation ofclassical operators: Hardy-type transforms, fractional integrals, potentials and maximal functions. Our main goal is to give a complete description of those Banach function spaces in which the above-mentioned operators act boundedly (com pactly). When a given operator is not bounded (compact), for example in some Lebesgue space, we look for weighted spaces where boundedness (compact ness) holds. We develop the ideas and the techniques for the derivation of appropriate conditions, in terms of weights, which are equivalent to bounded ness (compactness)."
Iteration regularization, i.e., utilization of iteration methods of any form for the stable approximate solution of ill-posed problems, is one of the most important but still insufficiently developed topics of the new theory of ill-posed problems. In this monograph, a general approach to the justification of iteration regulari zation algorithms is developed, which allows us to consider linear and nonlinear methods from unified positions. Regularization algorithms are the 'classical' iterative methods (steepest descent methods, conjugate direction methods, gradient projection methods, etc.) complemented by the stopping rule depending on level of errors in input data. They are investigated for solving linear and nonlinear operator equations in Hilbert spaces. Great attention is given to the choice of iteration index as the regularization parameter and to estimates of errors of approximate solutions. Stabilizing properties such as smoothness and shape constraints imposed on the solution are used. On the basis of these investigations, we propose and establish efficient regularization algorithms for stable numerical solution of a wide class of ill-posed problems. In particular, descriptive regularization algorithms, utilizing a priori information about the qualitative behavior of the sought solution and ensuring a substantial saving in computational costs, are considered for model and applied problems in nonlinear thermophysics. The results of calculations for important applications in various technical fields (a continuous casting, the treatment of materials and perfection of heat-protective systems using laser and composite technologies) are given."
This book is the first to be devoted to the theory of vector-valued functions with one variable. This theory is one of the fundamental tools employed in modern physics, the spectral theory of operators, approximation of analytic operators, analytic mappings between vectors, and vector-valued functions of several variables. The book contains three chapters devoted to the theory of normal functions, Hp-space, and vector-valued functions and their applications. Among the topics dealt with are the properties of complex functions in a complex plane and infinite-dimensional spaces, and the solution of vector-valued integral equations and boundary value problems by complex analysis and functional analysis, which involve methods which can be applied to problems in operations research and control theory. Much original research is included. This volume will be of interest to those whose work involves complex analysis and control theory, and can be recommended as a graduate text in these areas.
The First International Congress of the International Society for Analysis, its Applications and Computations (ISAAC'97) was held at the University of Delaware from 3 to 7 June 1997. As specified in the invitation of the President Professor Robert P. Gilbert of the ISAAC, we organized the session on Reproducing Kerneis and Their Applications. In our session, we presented 24 engaging talks on topics of current interest to the research community. As suggested and organized by Professor Gilbert, we hereby publish its Proceedings. Rather than restricting the papers to Congress participants, we asked the Ieading mathematicians in the field of the theory of reproducing kern eIs to submit papers. However, due to time restrietions and a compulsion to limit the Proceedings a reasonable size, we were unable to obtain a comprehensive treatment of the theory of reproducing kernels. Nevertheless, we hope this Proceedings of the First International Conference on reproducing kerneis will become a significant reference volume. Indeed, we believe that the theory of reproducing kernels will stand out as a fundamental and beautiful contribution in mathematical sciences with a broad array of applications to other areas of mathematics and science. We would like to thank Professor Robert Gilbert for his substantial contri bu tions to the Congress and to our Proceedings. We also express our sincere thanks to the staff of the University of Delaware for their manifold cooperation in organizing the Congress."
Generalized Measure Theory examines the relatively new mathematical area of generalized measure theory. The exposition unfolds systematically, beginning with preliminaries and new concepts, followed by a detailed treatment of important new results regarding various types of nonadditive measures and the associated integration theory. The latter involves several types of integrals: Sugeno integrals, Choquet integrals, pan-integrals, and lower and upper integrals. All of the topics are motivated by numerous examples, culminating in a final chapter on applications of generalized measure theory. Some key features of the book include: many exercises at the end of each chapter along with relevant historical and bibliographical notes, an extensive bibliography, and name and subject indices. The work is suitable for a classroom setting at the graduate level in courses or seminars in applied mathematics, computer science, engineering, and some areas of science. A sound background in mathematical analysis is required. Since the book contains many original results by the authors, it will also appeal to researchers working in the emerging area of generalized measure theory.
Onc service malhemalics has rendered Ihe "Et moil ... si ravait au oomment en revcnir. je n'y serais point aU' ' human race. It has put common sense back whcre it belongs, on the topmost shelf next Iules Verne to the dUlty canister IabeUed 'discarded n- sense'. The series is divergent; therefore we may be Eric T. BeU able to do something with it. O. H eaviside Mathematics is a tool for thought, A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other pans and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'are of this series."
The present book is a monograph including some recent results of mea sure and integration theory. It concerns three main ideas. The first idea deals with some ordering structures such as Riesz spaces and lattice or dered groups, and their relation to measure and integration theory. The second is the idea of fuzzy sets, quite new in general, and in measure theory particularly. The third area concerns some models of quantum mechanical systems. We study mainly models based on fuzzy set theory. Some recent results are systematically presented along with our suggestions for further development. The first chapter has an introductory character, where we present basic definitions and notations. Simultaneously, this chapter can be regarded as an elementary introduction to fuzzy set theory. Chapter 2 contains an original approach to the convergence of sequences of measurable functions. While the notion of a null set can be determined uniquely, the notion of a set of "small" measure has a fuzzy character. It is interesting that the notion of fuzzy set and the notion of a set of small measure (described mathematically by so-called small systems) were introduced independently at almost the same time. Although the axiomatic systems in both theories mentioned are quite different, we show that the notion of a small system can be considered from the point of view of fuzzy sets."
This volume is devoted to integral inequalities of the Gronwall-Bellman-Bihari type. Following a systematic exposition of linear and nonlinear inequalities, attention is paid to analogues including integro-differential inequalities, functional differential inequalities, and discrete and abstract analogues. Applications to the investigation of the properties of solutions of various classes of equations such as uniqueness, stability, dichotomy, asymptotic equivalence and behaviour is also discussed. The book comprises three chapters. Chapter I and II consider classical linear and nonlinear integral inequalities. Chapter III is devoted to various classes of integral inequalities of Gronwall type, and their analogues, which find applications in the theory of integro-differential equations, partial differential equations, differential equations with deviating argument, impube differential equations, etc. Each chapter concludes with a section illustrating the manner of application. The book also contains an extensive bibliography. For researchers whose work involves the theory and application of integral inequalities in mathematics, engineering and physics.
Approximation Theory, Wavelets and Applications draws together the latest developments in the subject, provides directions for future research, and paves the way for collaborative research. The main topics covered include constructive multivariate approximation, theory of splines, spline wavelets, polynomial and trigonometric wavelets, interpolation theory, polynomial and rational approximation. Among the scientific applications were de-noising using wavelets, including the de-noising of speech and images, and signal and digital image processing. In the area of the approximation of functions the main topics include multivariate interpolation, quasi-interpolation, polynomial approximation with weights, knot removal for scattered data, convergence theorems in Pade theory, Lyapunov theory in approximation, Neville elimination as applied to shape preserving presentation of curves, interpolating positive linear operators, interpolation from a convex subset of Hilbert space, and interpolation on the triangle and simplex. Wavelet theory is growing extremely rapidly and has applications which will interest readers in the physical, medical, engineering and social sciences. "
Many problems in science, technology and engineering are posed in the form of operator equations of the first kind, with the operator and RHS approximately known. But such problems often turn out to be ill-posed, having no solution, or a non-unique solution, and/or an unstable solution. Non-existence and non-uniqueness can usually be overcome by settling for generalised' solutions, leading to the need to develop regularising algorithms. The theory of ill-posed problems has advanced greatly since A. N. Tikhonov laid its foundations, the Russian original of this book (1990) rapidly becoming a classical monograph on the topic. The present edition has been completely updated to consider linear ill-posed problems with or without a priori constraints (non-negativity, monotonicity, convexity, etc.). Besides the theoretical material, the book also contains a FORTRAN program library. Audience: Postgraduate students of physics, mathematics, chemistry, economics, engineering. Engineers and scientists interested in data processing and the theory of ill-posed problems.
For many years physics and mathematics have had a fruitful influence on one another. Classical mechanics and celestial mechanics have produced very deep problems whose solutions have enhanced mathematics. On the other hand, mathematics itself has found interesting theories which then (sometimes after many years) have been reflected in physics, confirming the thesis that nothing is more practical than a good theory. The same is true for the younger physical discipline -of quantum mechanics. In the 1930s two events, not at all random, became: The mathematical back grounds of both quantum mechanics and probability theory. In 1936, G. Birkhoff and J. von Neumann published their historical paper "The logic of quantum mechanics," in which a quantum logic was suggested. The mathematical foundations of quantum mechanics remains an outstanding problem of mathematics, physics, logic and philosophy even today. The theory of quantum logics is a major stream in this axiomatical knowledge river, where L(H), the system of all closed subspaces of a Hilbert space H, due to J. von Neumann, plays an important role. When A.M. Gleason published his solution to G. Mackey's problem showing that any state (= probability measure) corresponds to a density operator, he probably did not anticipate that his solution would become a cornerstone of ax iomati cal theory of quantum mechanics nor that it would provide many interesting applications to mathematics."
It was noted in the preface of the book "Inequalities Involving Functions and Their Integrals and Derivatives," Kluwer Academic Publishers, 1991, by D.S. Mitrinovic, J.E. Pecaric and A.M. Fink; since the writing of the classical book by Hardy, Littlewood and Polya (1934), the subject of differential and integral inequalities has grown by about 800%. Ten years on, we can confidently assert that this growth will increase even more significantly. Twenty pages of Chapter XV in the above mentioned book are devoted to integral inequalities involving functions with bounded derivatives, or, Ostrowski type inequalities. This is now itself a special domain of the Theory of Inequalities with many powerful results and a large number of applications in Numerical Integration, Probability Theory and Statistics, Information Theory and Integral Operator Theory. The main aim of the present book, jointly written by the members of the Vic toria University node of RGMIA (Research Group in Mathematical Inequali ties and Applications, http: I /rgmia. vu. edu. au) and Th. M. Rassias, is to present a selected number of results on Ostrowski type inequalities. Results for univariate and multivariate real functions and their natural applications in the error analysis of numerical quadrature for both simple and multiple integrals as well as for the Riemann-Stieltjes integral are given."
In the last century many problems which arose in the science, engineer ing and technology literature involved nonlinear complex phenomena. In many situations these natural phenomena give rise to (i). ordinary differ ential equations which are singular in the independent and/or dependent variables together with initial and boundary conditions, and (ii). Volterra and Fredholm type integral equations. As one might expect general exis tence results were difficult to establish for the problems which arose. Indeed until the early 1990's only very special examples were examined and these examples were usually tackled using some special device, which was usually only applicable to the particular problem under investigation. However in the 1990's new results in inequality and fixed point theory were used to present a very general existence theory for singular problems. This mono graph presents an up to date account of the literature on singular problems. One of our aims also is to present recent theory on singular differential and integral equations to a new and wider audience. The book presents a compact, thorough, and self-contained account for singular problems. An important feature of this book is that we illustrate how easily the theory can be applied to discuss many real world examples of current interest. In Chapter 1 we study differential equations which are singular in the independent variable. We begin with some standard notation in Section 1. 2 and introduce LP-Caratheodory functions. Some fixed point theorems, the Arzela- Ascoli theorem and Banach's theorem are also stated here."
These proceedings comprise a large part of the papers presented at the In ternational Conference Factorization, Singular Operators and related problems, which was held from January 28 to February 1, 2002, at the University of th Madeira, Funchal, Portugal, to mark Professor Georgii Litvinchuk's 70 birth day. Experts in a variety of fields came to this conference to pay tribute to the great achievements of Professor Georgii Litvinchuk in the development of vari ous areas of operator theory. The main themes of the conference were focussed around the theory of singular type operators and factorization problems, but other topics such as potential theory and fractional calculus, to name but a couple, were also presented. The goal of the conference was to bring together mathematicians from var ious fields within operator theory and function theory in order to highlight recent advances in problems many of which were originally studied by Profes sor Litvinchuk and his scientific school. A second aim was to stimulate in ternational collaboration even further and promote the interaction of different approaches in current research in these areas. The Proceedings will be of great interest to researchers in Operator The ory, Real and Complex Analysis, Functional and Harmonic Analysis, Potential Theory, Fractional Calculus and other areas, as well as to graduate students looking for the latest results."
This volume contains the papers presented at the meeting "Distributions with given marginals and statistical modelling", held in Barcelona (Spain), July 17- 20, 2000. This is the fourth meeting on given marginals, showing that this topic has aremarkable interest. BRIEF HISTORY The construction of distributions with given marginals started with the seminal papers by Hoeffding (1940) and Fn!chet (1951). Since then, many others have contributed on this topic: Dall' Aglio, Farlie, Gumbel, Johnson, Kellerer, Kotz, Morgenstern, Marshali, Olkin, Strassen, Vitale, Whitt, etc., as weIl as Arnold, Cambanis, Deheuvels, Genest, Frank, Joe, Kirneldorf, Nelsen, Ruschendorf, Sampson, Scarsini, Tiit, etc. In 1957 Sklar and Schweizer introduced probabilistic metric spaces. In 1975 Kirneldorf and Sampson studied the uniform representation of a bivariate dis- tribution and proposed the desirable conditions that should be satisfied by any bivariate family. In 1991 Darsow, Nguyen and Olsen defined a natural operation between cop- ulas, with applications in stochastic processes. In 1993, AIsina, Nelsen and Schweizer introduced the notion of quasi-copula.
The present book deals with the finite-part singular integral equations, the multidimensional singular integral equations and the non-linear singular integral equations, which are currently used in many fields of engineering mechanics with applied character, like elasticity, plasticity, thermoelastoplasticity, viscoelasticity, viscoplasticity, fracture mechanics, structural analysis, fluid mechanics, aerodynamics and elastodynamics. These types of singular integral equations form the latest high technology on the solution of very important problems of solid and fluid mechanics and therefore special attention should be given by the reader of the present book, who is interested for the new technology of the twentieth-one century. Chapter 1 is devoted with a historical report and an extended outline of References, for the finite-part singular integral equations, the multidimensional singular integral equations and the non-linear singular integral equations. Chapter 2 provides a finite-part singular integral representation analysis in Lp spaces and in general Hilbert spaces. In the same Chapter are investigated all possible approximation methods for the numerical evaluation of the finite-part singular integral equations, as closed form solutions for the above type of integral equations are available only in simple cases. Also, Chapter 2 provides further a generalization of the well known Sokhotski-Plemelj formulae and the Nother theorems, for the case of a finite-part singular integral equation.
With the groundwork laid in the first volume (EMS 15) of the Commutative Harmonic Analysis subseries of the Encyclopaedia, the present volume takes up four advanced topics in the subject: Littlewood-Paley theory for singular integrals, exceptional sets, multiple Fourier series and multiple Fourier integrals.
This is a revised and expanded edition of a successful graduate and reference text. The book is designed for a standard graduate course on probability theory, including some important applications. The new edition offers a detailed treatment of the core area of probability, and both structural and limit results are presented in detail. Compared to the first edition, the material and presentation are better highlighted; each chapter is improved and updated.
This book gives background material on the theory of Laplace transforms, together with a fairly comprehensive list of methods that are available at the current time. Computer programs are included for those methods that perform consistently well on a wide range of Laplace transforms. Operational methods have been used for over a century to solve problems such as ordinary and partial differential equations.
Based on a course given to talented high-school students at Ohio University in 1988, this book is essentially an advanced undergraduate textbook about the mathematics of fractal geometry. It nicely bridges the gap between traditional books on topology/analysis and more specialized treatises on fractal geometry. The book treats such topics as metric spaces, measure theory, dimension theory, and even some algebraic topology. It takes into account developments in the subject matter since 1990. Sections are clear and focused. The book contains plenty of examples, exercises, and good illustrations of fractals, including 16 color plates.
'I never heard of "Ugli?cation," Alice ventured to say. 'What is it?'' Lewis Carroll, "Alice in Wonderland" Subject and motivation. The present book is devoted to a theory of m- tipliers in spaces of di?erentiable functions and its applications to analysis, partial di?erential and integral equations. By a multiplier acting from one functionspaceS intoanotherS, wemeanafunctionwhichde?nesabounded 1 2 linear mapping ofS intoS by pointwise multiplication. Thus with any pair 1 2 of spacesS, S we associate a third one, the space of multipliersM(S?S ) 1 2 1 2 endowed with the norm of the operator of multiplication. In what follows, the role of the spacesS andS is played by Sobolev spaces, Bessel potential 1 2 spaces, Besov spaces, and the like. The Fourier multipliers are not dealt with in this book. In order to emp- size the di?erence between them and the multipliers under consideration, we attach Sobolev's name to the latter. By coining the term Sobolev multipliers we just hint at various spaces of di?erentiable functions of Sobolev's type, being fully aware that Sobolev never worked on multipliers. After all, Fourier never did either.
Generalising classical concepts of probability theory, the investigation of operator (semi)-stable laws as possible limit distributions of operator-normalized sums of i.i.d. random variable on finite-dimensional vector space started in 1969. Currently, this theory is still in progress and promises interesting applications. Parallel to this, similar stability concepts for probabilities on groups were developed during recent decades. It turns out that the existence of suitable limit distributions has a strong impact on the structure of both the normalizing automorphisms and the underlying group. Indeed, investigations in limit laws led to contractable groups and - at least within the class of connected groups - to homogeneous groups, in particular to groups that are topologically isomorphic to a vector space. Moreover, it has been shown that (semi)-stable measures on groups have a vector space counterpart and vice versa. The purpose of this book is to describe the structure of limit laws and the limit behaviour of normalized i.i.d. random variables on groups and on finite-dimensional vector spaces from a common point of view. This will also shed a new light on the classical situation. Chapter 1 provides an introduction to stability problems on vector spaces. Chapter II is concerned with parallel investigations for homogeneous groups and in Chapter III the situation beyond homogeneous Lie groups is treated. Throughout, emphasis is laid on the description of features common to the group- and vector space situation. Chapter I can be understood by graduate students with some background knowledge in infinite divisibility. Readers of Chapters II and III are assumed to be familiar with basic techniques from probability theory on locally compact groups.
This volume is a useful introduction to the subject of Fourier Integral Operators and is based on the author 's classic set of notes. Covering a range of topics from H rmander 's exposition of the theory, Duistermaat approaches the subject from symplectic geometry and includes application to hyperbolic equations (= equations of wave type) and oscillatory asymptotic solutions which may have caustics. This text is suitable for mathematicians and (theoretical) physicists with an interest in (linear) partial differential equations, especially in wave propagation, rep. WKB-methods.
This book contains almost 450 exercises, all with complete solutions; it provides supplementary examples, counter-examples, and applications for the basic notions usually presented in an introductory course in Functional Analysis. Three comprehensive sections cover the broad topic of functional analysis. A large number of exercises on the weak topologies is included.
Many important phenomena are described and modeled by means of differential and integral equations. To understand these phenomena necessarily implies being able to solve the differential and integral equations that model them. Such equations, and the development of techniques for solving them, have always held a privileged place in the mathematical sciences. Today, theoretical advances have led to more abstract and comprehensive theories which are increasingly more complex in their mathematical concepts. Theoretical investigations along these lines have led to even more abstract and comprehensive theories, and to increasingly complex mathematical concepts. Long-standing teaching practice has, however, shown that the theory of differential and integral equations cannot be studied thoroughly and understood by mere contemplation. This can only be achieved by acquiring the necessary techniques; and the best way to achieve this is by working through as many different exercises as possible. The eight chapters of this book contain a large number of problems and exercises, selected on the basis of long experience in teaching students, which together with the author's original problems cover the whole range of current methods employed in solving the integral, differential equations, and the partial differential equations of order one, without, however, renouncing the classical problems. Every chapter of this book begins with the succinct theoretical exposition of the minimum of knowledge required to solve the problems and exercises therein. |
You may like...
Weighted Polynomial Approximation and…
Peter Junghanns, Giuseppe Mastroianni, …
Hardcover
R4,311
Discovery Miles 43 110
Theory of Sobolev Multipliers - With…
Vladimir Maz'ya, Tatyana O. Shaposhnikova
Hardcover
R6,274
Discovery Miles 62 740
Schwarz Methods and Multilevel…
Ernst P. Stephan, Thanh Tran
Hardcover
R4,624
Discovery Miles 46 240
Positivity and its Applications…
Eder Kikianty, Mokhwetha Mabula, …
Hardcover
R5,233
Discovery Miles 52 330
Generalized Radon Transforms And Imaging…
Gaik Ambartsoumian
Hardcover
R2,249
Discovery Miles 22 490
Integral Equations with Difference…
Lev A. Sakhnovich
Hardcover
The Rademacher System in Function Spaces
Sergey V. Astashkin
Hardcover
R3,980
Discovery Miles 39 800
|