![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Integral equations
Approximation Theory, Wavelets and Applications draws together the latest developments in the subject, provides directions for future research, and paves the way for collaborative research. The main topics covered include constructive multivariate approximation, theory of splines, spline wavelets, polynomial and trigonometric wavelets, interpolation theory, polynomial and rational approximation. Among the scientific applications were de-noising using wavelets, including the de-noising of speech and images, and signal and digital image processing. In the area of the approximation of functions the main topics include multivariate interpolation, quasi-interpolation, polynomial approximation with weights, knot removal for scattered data, convergence theorems in Pade theory, Lyapunov theory in approximation, Neville elimination as applied to shape preserving presentation of curves, interpolating positive linear operators, interpolation from a convex subset of Hilbert space, and interpolation on the triangle and simplex. Wavelet theory is growing extremely rapidly and has applications which will interest readers in the physical, medical, engineering and social sciences. "
This volume is devoted to integral inequalities of the Gronwall-Bellman-Bihari type. Following a systematic exposition of linear and nonlinear inequalities, attention is paid to analogues including integro-differential inequalities, functional differential inequalities, and discrete and abstract analogues. Applications to the investigation of the properties of solutions of various classes of equations such as uniqueness, stability, dichotomy, asymptotic equivalence and behaviour is also discussed. The book comprises three chapters. Chapter I and II consider classical linear and nonlinear integral inequalities. Chapter III is devoted to various classes of integral inequalities of Gronwall type, and their analogues, which find applications in the theory of integro-differential equations, partial differential equations, differential equations with deviating argument, impube differential equations, etc. Each chapter concludes with a section illustrating the manner of application. The book also contains an extensive bibliography. For researchers whose work involves the theory and application of integral inequalities in mathematics, engineering and physics.
This book is the first to be devoted to the theory of vector-valued functions with one variable. This theory is one of the fundamental tools employed in modern physics, the spectral theory of operators, approximation of analytic operators, analytic mappings between vectors, and vector-valued functions of several variables. The book contains three chapters devoted to the theory of normal functions, Hp-space, and vector-valued functions and their applications. Among the topics dealt with are the properties of complex functions in a complex plane and infinite-dimensional spaces, and the solution of vector-valued integral equations and boundary value problems by complex analysis and functional analysis, which involve methods which can be applied to problems in operations research and control theory. Much original research is included. This volume will be of interest to those whose work involves complex analysis and control theory, and can be recommended as a graduate text in these areas.
The notion of a dominated or rnajorized operator rests on a simple idea that goes as far back as the Cauchy method of majorants. Loosely speaking, the idea can be expressed as follows. If an operator (equation) under study is dominated by another operator (equation), called a dominant or majorant, then the properties of the latter have a substantial influence on the properties of the former . Thus, operators or equations that have "nice" dominants must possess "nice" properties. In other words, an operator with a somehow qualified dominant must be qualified itself. Mathematical tools, putting the idea of domination into a natural and complete form, were suggested by L. V. Kantorovich in 1935-36. He introduced the funda mental notion of a vector space normed by elements of a vector lattice and that of a linear operator between such spaces which is dominated by a positive linear or monotone sublinear operator. He also applied these notions to solving functional equations. In the succeedingyears many authors studied various particular cases of lattice normed spaces and different classes of dominated operators. However, research was performed within and in the spirit of the theory of vector and normed lattices. So, it is not an exaggeration to say that dominated operators, as independent objects of investigation, were beyond the reach of specialists for half a century. As a consequence, the most important structural properties and some interesting applications of dominated operators have become available since recently."
It was noted in the preface of the book "Inequalities Involving Functions and Their Integrals and Derivatives," Kluwer Academic Publishers, 1991, by D.S. Mitrinovic, J.E. Pecaric and A.M. Fink; since the writing of the classical book by Hardy, Littlewood and Polya (1934), the subject of differential and integral inequalities has grown by about 800%. Ten years on, we can confidently assert that this growth will increase even more significantly. Twenty pages of Chapter XV in the above mentioned book are devoted to integral inequalities involving functions with bounded derivatives, or, Ostrowski type inequalities. This is now itself a special domain of the Theory of Inequalities with many powerful results and a large number of applications in Numerical Integration, Probability Theory and Statistics, Information Theory and Integral Operator Theory. The main aim of the present book, jointly written by the members of the Vic toria University node of RGMIA (Research Group in Mathematical Inequali ties and Applications, http: I /rgmia. vu. edu. au) and Th. M. Rassias, is to present a selected number of results on Ostrowski type inequalities. Results for univariate and multivariate real functions and their natural applications in the error analysis of numerical quadrature for both simple and multiple integrals as well as for the Riemann-Stieltjes integral are given."
In the last century many problems which arose in the science, engineer ing and technology literature involved nonlinear complex phenomena. In many situations these natural phenomena give rise to (i). ordinary differ ential equations which are singular in the independent and/or dependent variables together with initial and boundary conditions, and (ii). Volterra and Fredholm type integral equations. As one might expect general exis tence results were difficult to establish for the problems which arose. Indeed until the early 1990's only very special examples were examined and these examples were usually tackled using some special device, which was usually only applicable to the particular problem under investigation. However in the 1990's new results in inequality and fixed point theory were used to present a very general existence theory for singular problems. This mono graph presents an up to date account of the literature on singular problems. One of our aims also is to present recent theory on singular differential and integral equations to a new and wider audience. The book presents a compact, thorough, and self-contained account for singular problems. An important feature of this book is that we illustrate how easily the theory can be applied to discuss many real world examples of current interest. In Chapter 1 we study differential equations which are singular in the independent variable. We begin with some standard notation in Section 1. 2 and introduce LP-Caratheodory functions. Some fixed point theorems, the Arzela- Ascoli theorem and Banach's theorem are also stated here."
These proceedings comprise a large part of the papers presented at the In ternational Conference Factorization, Singular Operators and related problems, which was held from January 28 to February 1, 2002, at the University of th Madeira, Funchal, Portugal, to mark Professor Georgii Litvinchuk's 70 birth day. Experts in a variety of fields came to this conference to pay tribute to the great achievements of Professor Georgii Litvinchuk in the development of vari ous areas of operator theory. The main themes of the conference were focussed around the theory of singular type operators and factorization problems, but other topics such as potential theory and fractional calculus, to name but a couple, were also presented. The goal of the conference was to bring together mathematicians from var ious fields within operator theory and function theory in order to highlight recent advances in problems many of which were originally studied by Profes sor Litvinchuk and his scientific school. A second aim was to stimulate in ternational collaboration even further and promote the interaction of different approaches in current research in these areas. The Proceedings will be of great interest to researchers in Operator The ory, Real and Complex Analysis, Functional and Harmonic Analysis, Potential Theory, Fractional Calculus and other areas, as well as to graduate students looking for the latest results."
This volume contains the papers presented at the meeting "Distributions with given marginals and statistical modelling", held in Barcelona (Spain), July 17- 20, 2000. This is the fourth meeting on given marginals, showing that this topic has aremarkable interest. BRIEF HISTORY The construction of distributions with given marginals started with the seminal papers by Hoeffding (1940) and Fn!chet (1951). Since then, many others have contributed on this topic: Dall' Aglio, Farlie, Gumbel, Johnson, Kellerer, Kotz, Morgenstern, Marshali, Olkin, Strassen, Vitale, Whitt, etc., as weIl as Arnold, Cambanis, Deheuvels, Genest, Frank, Joe, Kirneldorf, Nelsen, Ruschendorf, Sampson, Scarsini, Tiit, etc. In 1957 Sklar and Schweizer introduced probabilistic metric spaces. In 1975 Kirneldorf and Sampson studied the uniform representation of a bivariate dis- tribution and proposed the desirable conditions that should be satisfied by any bivariate family. In 1991 Darsow, Nguyen and Olsen defined a natural operation between cop- ulas, with applications in stochastic processes. In 1993, AIsina, Nelsen and Schweizer introduced the notion of quasi-copula.
With the groundwork laid in the first volume (EMS 15) of the Commutative Harmonic Analysis subseries of the Encyclopaedia, the present volume takes up four advanced topics in the subject: Littlewood-Paley theory for singular integrals, exceptional sets, multiple Fourier series and multiple Fourier integrals.
The present book deals with the finite-part singular integral equations, the multidimensional singular integral equations and the non-linear singular integral equations, which are currently used in many fields of engineering mechanics with applied character, like elasticity, plasticity, thermoelastoplasticity, viscoelasticity, viscoplasticity, fracture mechanics, structural analysis, fluid mechanics, aerodynamics and elastodynamics. These types of singular integral equations form the latest high technology on the solution of very important problems of solid and fluid mechanics and therefore special attention should be given by the reader of the present book, who is interested for the new technology of the twentieth-one century. Chapter 1 is devoted with a historical report and an extended outline of References, for the finite-part singular integral equations, the multidimensional singular integral equations and the non-linear singular integral equations. Chapter 2 provides a finite-part singular integral representation analysis in Lp spaces and in general Hilbert spaces. In the same Chapter are investigated all possible approximation methods for the numerical evaluation of the finite-part singular integral equations, as closed form solutions for the above type of integral equations are available only in simple cases. Also, Chapter 2 provides further a generalization of the well known Sokhotski-Plemelj formulae and the Nother theorems, for the case of a finite-part singular integral equation.
This is a revised and expanded edition of a successful graduate and reference text. The book is designed for a standard graduate course on probability theory, including some important applications. The new edition offers a detailed treatment of the core area of probability, and both structural and limit results are presented in detail. Compared to the first edition, the material and presentation are better highlighted; each chapter is improved and updated.
This book gives background material on the theory of Laplace transforms, together with a fairly comprehensive list of methods that are available at the current time. Computer programs are included for those methods that perform consistently well on a wide range of Laplace transforms. Operational methods have been used for over a century to solve problems such as ordinary and partial differential equations.
Based on a course given to talented high-school students at Ohio University in 1988, this book is essentially an advanced undergraduate textbook about the mathematics of fractal geometry. It nicely bridges the gap between traditional books on topology/analysis and more specialized treatises on fractal geometry. The book treats such topics as metric spaces, measure theory, dimension theory, and even some algebraic topology. It takes into account developments in the subject matter since 1990. Sections are clear and focused. The book contains plenty of examples, exercises, and good illustrations of fractals, including 16 color plates.
'I never heard of "Ugli?cation," Alice ventured to say. 'What is it?'' Lewis Carroll, "Alice in Wonderland" Subject and motivation. The present book is devoted to a theory of m- tipliers in spaces of di?erentiable functions and its applications to analysis, partial di?erential and integral equations. By a multiplier acting from one functionspaceS intoanotherS, wemeanafunctionwhichde?nesabounded 1 2 linear mapping ofS intoS by pointwise multiplication. Thus with any pair 1 2 of spacesS, S we associate a third one, the space of multipliersM(S?S ) 1 2 1 2 endowed with the norm of the operator of multiplication. In what follows, the role of the spacesS andS is played by Sobolev spaces, Bessel potential 1 2 spaces, Besov spaces, and the like. The Fourier multipliers are not dealt with in this book. In order to emp- size the di?erence between them and the multipliers under consideration, we attach Sobolev's name to the latter. By coining the term Sobolev multipliers we just hint at various spaces of di?erentiable functions of Sobolev's type, being fully aware that Sobolev never worked on multipliers. After all, Fourier never did either.
This volume is a useful introduction to the subject of Fourier Integral Operators and is based on the author 's classic set of notes. Covering a range of topics from H rmander 's exposition of the theory, Duistermaat approaches the subject from symplectic geometry and includes application to hyperbolic equations (= equations of wave type) and oscillatory asymptotic solutions which may have caustics. This text is suitable for mathematicians and (theoretical) physicists with an interest in (linear) partial differential equations, especially in wave propagation, rep. WKB-methods.
One service mathematics has rendered the 'Et moi .... si favait su comment en revenir, je human race. It has put common sense back n'y serais point a1l6.' lules Verne where it belongs, on the topmost shelf next to the dusty eanister labelled 'discarded nonsense' . Erie T. Bell The series is divergent; therefore we may be able to do something with it O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and nonlineari ties abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sci ences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One ser vice topology has rendered mathematical physics .. .'; 'One service logic has rendered computer science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series. This series, Mathematics and Its Applications, started in 1977. Now that over one hundred volumes have appeared it seems opportune to reexamine its scope. At the time I wrote "Growing specia1ization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the 'tree' of knowledge of mathematics and It also happens, quite often in related fields does not grow only by putting forth new branches."
Many important phenomena are described and modeled by means of differential and integral equations. To understand these phenomena necessarily implies being able to solve the differential and integral equations that model them. Such equations, and the development of techniques for solving them, have always held a privileged place in the mathematical sciences. Today, theoretical advances have led to more abstract and comprehensive theories which are increasingly more complex in their mathematical concepts. Theoretical investigations along these lines have led to even more abstract and comprehensive theories, and to increasingly complex mathematical concepts. Long-standing teaching practice has, however, shown that the theory of differential and integral equations cannot be studied thoroughly and understood by mere contemplation. This can only be achieved by acquiring the necessary techniques; and the best way to achieve this is by working through as many different exercises as possible. The eight chapters of this book contain a large number of problems and exercises, selected on the basis of long experience in teaching students, which together with the author's original problems cover the whole range of current methods employed in solving the integral, differential equations, and the partial differential equations of order one, without, however, renouncing the classical problems. Every chapter of this book begins with the succinct theoretical exposition of the minimum of knowledge required to solve the problems and exercises therein.
This book contains almost 450 exercises, all with complete solutions; it provides supplementary examples, counter-examples, and applications for the basic notions usually presented in an introductory course in Functional Analysis. Three comprehensive sections cover the broad topic of functional analysis. A large number of exercises on the weak topologies is included.
A collection of articles on various aspects of q-series and special functions dedicated to Mizan Rahman. It also includes an article by Askey, Ismail, and Koelink on Rahman 's mathematical contributions and how they influenced the recent upsurge in the subject.
Classicalexamples of moreand more oscillatingreal-valued functions on a domain N ?of R are the functions u (x)=sin(nx)with x=(x ,...,x ) or the so-called n 1 1 n n+1 Rademacherfunctionson]0,1[,u (x)=r (x) = sgn(sin(2 ?x))(seelater3.1.4). n n They may appear as the gradients?v of minimizing sequences (v ) in some n n n?N variationalproblems. Intheseexamples,thefunctionu convergesinsomesenseto n ameasure on ? xR, called Young measure. In Functional Analysis formulation, this is the narrow convergence to of the image of the Lebesgue measure on ? by ? ? (?,u (?)). In the disintegrated form ( ) ,the parametrized measure n ? ??? ? captures the possible scattering of the u around ?. n Curiously if (X ) is a sequence of random variables deriving from indep- n n?N dent ones, the n-th one may appear more and more far from the k ?rst ones as 2 if it was oscillating (think of orthonormal vectors in L which converge weakly to 0). More precisely when the laws L(X ) narrowly converge to some probability n measure , it often happens that for any k and any A in the algebra generated by X ,...,X , the conditional law L(X|A) still converges to (see Chapter 9) 1 k n which means 1 ??? C (R) ?(X (?))dP(?)?? ?d b n P(A) A R or equivalently, ? denoting the image of P by ? ? (?,X (?)), n X n (1l ??)d? ?? (1l ??)d[P? ].
This volume presents a unified approach to constructing iterative methods for solving irregular operator equations and provides rigorous theoretical analysis for several classes of these methods. The analysis of methods includes convergence theorems as well as necessary and sufficient conditions for their convergence at a given rate. The principal groups of methods studied in the book are iterative processes based on the technique of universal linear approximations, stable gradient-type processes, and methods of stable continuous approximations. Compared to existing monographs and textbooks on ill-posed problems, the main distinguishing feature of the presented approach is that it doesn't require any structural conditions on equations under consideration, except for standard smoothness conditions. This allows to obtain in a uniform style stable iterative methods applicable to wide classes of nonlinear inverse problems. Practical efficiency of suggested algorithms is illustrated in application to inverse problems of potential theory and acoustic scattering. The volume can be read by anyone with a basic knowledge of functional analysis. The book will be of interest to applied mathematicians and specialists in mathematical modeling and inverse problems.
Tauberian theory compares summability methods for series and integrals, helps to decide when there is convergence, and provides asymptotic and remainder estimates. The author shows the development of the theory from the beginning and his expert commentary evokes the excitement surrounding the early results. He shows the fascination of the difficult Hardy-Littlewood theorems and of an unexpected simple proof, and extolls Wiener's breakthrough based on Fourier theory. There are the spectacular "high-indices" theorems and Karamata's "regular variation," which permeates probability theory. The author presents Gelfand's elegant algebraic treatment of Wiener theory and his own distributional approach. There is also a new unified theory for Borel and "circle" methods. The text describes many Tauberian ways to the prime number theorem. A large bibliography and a substantial index round out the book.
There are many problems in nonlinear partial differential equations with delay which arise from, for example, physical models, biochemical models, and social models. Some of them can be formulated as nonlinear functional evolutions in infinite-dimensional abstract spaces. Since Webb (1976) considered autonomous nonlinear functional evo lutions in infinite-dimensional real Hilbert spaces, many nonlinear an alysts have studied for the last nearly three decades autonomous non linear functional evolutions, non-autonomous nonlinear functional evo lutions and quasi-nonlinear functional evolutions in infinite-dimensional real Banach spaces. The techniques developed for nonlinear evolutions in infinite-dimensional real Banach spaces are applied. This book gives a detailed account of the recent state of theory of nonlinear functional evolutions associated with accretive operators in infinite-dimensional real Banach spaces. Existence, uniqueness, and stability for 'solutions' of nonlinear func tional evolutions are considered. Solutions are presented by nonlinear semigroups, or evolution operators, or methods of lines, or inequalities by Benilan. This book is divided into four chapters. Chapter 1 contains some basic concepts and results in the theory of nonlinear operators and nonlinear evolutions in real Banach spaces, that play very important roles in the following three chapters. Chapter 2 deals with autonomous nonlinear functional evolutions in infinite-dimensional real Banach spaces. Chapter 3 is devoted to non-autonomous nonlinear functional evolu tions in infinite-dimensional real Banach spaces. Finally, in Chapter 4 quasi-nonlinear functional evolutions are con sidered in infinite-dimensional real Banach spaces."
The subject of this book is probabilistic number theory. In a wide sense probabilistic number theory is part of the analytic number theory, where the methods and ideas of probability theory are used to study the distribution of values of arithmetic objects. This is usually complicated, as it is difficult to say anything about their concrete values. This is why the following problem is usually investigated: given some set, how often do values of an arithmetic object get into this set? It turns out that this frequency follows strict mathematical laws. Here we discover an analogy with quantum mechanics where it is impossible to describe the chaotic behaviour of one particle, but that large numbers of particles obey statistical laws. The objects of investigation of this book are Dirichlet series, and, as the title shows, the main attention is devoted to the Riemann zeta-function. In studying the distribution of values of Dirichlet series the weak convergence of probability measures on different spaces (one of the principle asymptotic probability theory methods) is used. The application of this method was launched by H. Bohr in the third decade of this century and it was implemented in his works together with B. Jessen. Further development of this idea was made in the papers of B. Jessen and A. Wintner, V. Borchsenius and B.
In this book a general topological construction of extension is proposed for problems of attainability in topological spaces under perturbation of a system of constraints. This construction is realized in a special class of generalized elements defined as finitely additive measures. A version of the method of programmed iterations is constructed. This version realizes multi-valued control quasistrategies, which guarantees the solution of the control problem that consists in guidance to a given set under observation of phase constraints. Audience: The book will be of interest to researchers, and graduate students in the field of optimal control, mathematical systems theory, measure and integration, functional analysis, and general topology. |
![]() ![]() You may like...
|