![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Integral equations
Es ist jetzt ein Vierteljahrhundert, seit die ersten fundamentalen Arbeiten uber Integralgleichungen erschienen sind; die Hochflut der Produktion auf diesem Gebiete ist abgeebbt. Ein zusammenfassender Bericht uber Integralgleichungen scheint daher jetzt von besonderer Bedeutung, um im Ruckblick das Erreichte darzustellen, die noch offenen Fragen hervorzuheben. In vieljahriger gemeinsamer Arbeit haben die beiden Verfasser die ganze vorhandene Literatur einer ge nauen Analyse unterzogen, Methoden und Resultate auf ihre Tragweite untersucht und manche neue Zusammenhange aufgedeckt. Das Resultat dieser muhsamen Arbeit ist in dem vorliegenden Artikel nito'dergelegt; der Bericht ist fur jeden unentbehrlich, der sich in dieses fur die An wendungen so uberaus wichtige Gebiet tiefer einarbeiten will. Der Forscher aber wird durch die Lekture zu neuen Untersuchungen an geregt, und ich habe die feste Uberzeugung, dass das vorliegende Referat die Integralgleichungen und noch mehr die daran anschliessen den, in der Theorie der Integralgleichungen wurzelnden allgemeineren Probleme wieder in den Mittelpunkt des wissenschaftlichen Interesses bringen wird. Wurz burg, im Oktober 1927. E. Hilb. 11 C 13. INTEGRALGLEICHUNGEN UND GLEICHUNGEN MIT UNENDLICHVIELEN UNBEKANNTEN. VON ERNST HELLINGER UND OTTO TOEPLITZ IN FRANKF RT A. M. IN KIEL. Vorbemerkung. Der Artikel will im Prinzip die bis 1. Januar 1923 er schienene Literatur berucksichtigen; jedoch glauben wir alles wesentliche, was nachher an einschlagigen Arbeiten erschienen ist, noch erfasst zu haben. Im Einklang mit den von der Redaktion getroffenen Dispositionen behandeln wir nur die Theorie selbst, wahrend ihre Anwendungen an anderen Stellen der Ency klopadie zur Geltung gebracht sind."
Erster Abschnitt. 6. Hurwitz, uber die Fourierschen Konstanten integrierbarer Funk tionen. )Iath. Annalen 57, 1903. Zweiter Abschnitt. 8. Lord Rayleigh, Theory of sound I, Chap. 5, 1894. 10. Die dynamische Deutung der Legendreschen Polynome stammt aus einer Prufungsarbeit von K. Fischer. Breslau uno. 12. Frank, Die Integralgleichungen in der Theorie der kleinen Schwingungen von Faden. Sitzungsberichte der Wien er Akademie 117 (Ir a), 1908. 13, 14. Schaefer und Juretzka, Zur Theorie der erzwungenen Schwingungen von Saiten und Staben. Phys. Zeitschrift 10, 1909. Jahres bericht der Schlesischen Gesellschaft fur vaterlandische Kultur 1909. 15. Kneser, Dynamische Deutung gewisser Integralgleichungen mit symmetrischem Kern. Jahresbericht der Schlesischen Gesellschaft fur vater landische Kultur 1909. 17. Fredholm, Sur la theorie des spectres. Comptes rendus 142, 1906. Schaefer, Dispersionstheorie und Serienspektren. Ann. d. Phys. (4) 28, 1909. uder die Bestimmung der Elektronenzahl aus der Dispersion. Ann. d. Phys. (4) 32, 1910. Dritter Abschnitt. Als grundlegend fur die allgemeine Theorie seien folgende Arbeiten angefuhrt: Fredholm, Sur une nouvelle methode pour la resolution du probleme de Dirichlet. Ofversigt af akademiens forhandlingar 1)7, Stockholm 1900. Fredholm, Sur une classe d'equations fonctionelles. Acta math. 27, 1903. Die Theorie der symmetrischen Kerne und besonders die vorliegende Darstellung beruht auf folgenden grundlegenden Arbeiten: Ri bert, Grundzuge einer allgemeinen Theorie der linearen Integral gleichungen. Erste und zweite Mitteilung. Gottinger Naohrichten, math. phys. Klasse, 1904. Zusammen mit weiteren Mitteilungen veroffentlicht in einem Buch desselben Titels, Leipzig 1912. Anmerkungen."
This book is intended as a manual on modern advanced statistical methods for signal processing. The objectives of signal processing are the analysis, synthesis, and modification of signals measured from different natural phenomena, including engineering applications as well. Often the measured signals are affected by noise, distortion and incompleteness, and this makes it difficult to extract significant signal information. The main topic of the book is the extraction of significant information from measured data, with the aim of reducing the data size while keeping the basic information/knowledge about the peculiarities and properties of the analyzed system; to this aim, advanced and recently developed methods in signal analysis and treatment are introduced and described in depth. More in details, the book covers the following new advanced topics (and the corresponding algorithms), including detailed descriptions and discussions: the Eigen-Coordinates (ECs) method, The statistics of the fractional moments, The quantitative "universal" label (QUL) and the universal distribution function for the relative fluctuations (UDFRF), the generalized Prony spectrum, the Non-orthogonal Amplitude Frequency Analysis of the Smoothed Signals (NAFASS), the discrete geometrical invariants (DGI) serving as the common platform for quantitative comparison of different random functions. Although advanced topics are discussed in signal analysis, each subject is introduced gradually, with the use of only the necessary mathematics, and avoiding unnecessary abstractions. Each chapter presents testing and verification examples on real data for each proposed method. In comparison with other books, here it is adopted a more practical approach with numerous real case studies.
Die gliinzende Entdeekung, dureh die Herr Fredholm im Jahre 1900 die Analysis und die mathematisehe Physik bereiehert hat, ist alsbald von hervorragenden Mathematikern fortgebildet und auf neue Gebiete angewandt worden. Sehienen zuniiehst die Existenzfragen del' Potentialtheorie den Hauptvorteil zu gewinnen, so haben die Herren Stekloff und Hilbert in ihren Abhand lungen yom Jahre 1904 die mit den Fouriersehen Reihen zu sammenhiingenden Randwertaufgaben del' mathematischen Physik den neuen analytischen Hilfsmitteln zugiinglich gemaeht. Dureh ihre Arbeiten angeregt, hat Herr Schmidt ein Jahr darauf in seiner Dissertation die allgemeine Theorie del' Integralgleichungen in eine Form gebraeht, die an Kiirze, Eleganz und Allgemeinheit kaum zu iibertreffen sein diirfte. AHe diese Arbeiten haben meine eigenen, demselben Gebiet angehorigen Untersuchungen wesent lich beeinflu13t und angeregt. Abel' wozu eine zusammenfassende Darstellung, da doch die Literatur des Gegenstandes in sehnellem Waehstum begriffen ist, und vortreffliche Darstellungen in den Werken del' Herren Bocher und Kowalewski vorliegen? lch glaube das vor liegende Werk durch folgende Erwiigungen rechtfertigen und in semem besonderen Wesen kennzeichnen zu konnen. Die Mathematiker haben sieh in del' letzten Zeit iiberwiegend mit del' Fortbildung del' allgemeinen Theorie, insbesondere mit gewissen algebraischen Analogien beschiiftigt. So interessant die hieraus entspringenden Fragen sein mogen, will es mil' doch seheinen, als ob ihnen gegeniiber die Anwendungen, die den Aus gangspunkt del' Fredholmschen Entdeckung gebildet haben, zu sehr in den Hintergrund getreten waren. J edenfaHs ist es fiir den Anfiinger wie fUr den ferner stehenden Mathematiker und den VI Vorwort."
In calculus, we integrate functions using two types of integration -- definite integration and indefinite integration. In functional analysis, we integrate operators. To find a solution of a differential equation, we integrate this equation. Going beyond mathematics, we see that in databases, we integrate data, as well as database schemas. In electronics, integrated circuits have become central components of computers, calculators, cellular phones, and other digital appliances, which are now inextricable parts of the structure of modern societies. In economics, we have integration of the economy of one country into the economy of a union of other countries, eg: integration of economy of Hungary into the European Union economy. There is political integration and there is social integration. Thus, we can see many types and kinds of integration. Design of complex database schemas is based on a gradual integration of external schemas. Research presented in this book studies integration in mathematics and its applications. However, it is not only classical integration of functions but also fuzzy integration, integration of structures, probability as integration of random characteristics and integral operators in bundles with a hyperspace base.
This classroom-tested text is intended for a one-semester course in Lebesgue's theory. With over 180 exercises, the text takes an elementary approach, making it easily accessible to both upper-undergraduate- and lower-graduate-level students. The three main topics presented are measure, integration, and differentiation, and the only prerequisite is a course in elementary real analysis. In order to keep the book self-contained, an introductory chapter is included with the intent to fill the gap between what the student may have learned before and what is required to fully understand the consequent text. Proofs of difficult results, such as the differentiability property of functions of bounded variations, are dissected into small steps in order to be accessible to students. With the exception of a few simple statements, all results are proven in the text. The presentation is elementary, where -algebras are not used in the text on measure theory and Dini's derivatives are not used in the chapter on differentiation. However, all the main results of Lebesgue's theory are found in the book. http://online.sfsu.edu/sergei/MID.htm
Self-organized criticality, the spontaneous development of systems
to a critical state, is the first general theory of complex systems
with a firm mathematical basis. This theory describes how many
seemingly desperate aspects of the world, from stock market crashes
to mass extinctions, avalanches to solar flares, all share a set of
simple, easily described properties.
This concise treatment of integral equations has long stood as a standard introduction to the subject. Hochstadt's presentation comprises a reasonable compromise between the precise, but lengthy, classical approach and the faster, but less productive, functional analytic approach, while developing the most desirable features of each. The 7 chapters present an introduction to integral equations, elementary techniques, the theory of compact operators, applications to boundary value problems in more than dimension, a complete treatment of numerous transform techniques, a development of the classical Fredholm technique, and application of Schauder fixed point theorem to nonlinear equations.
Authoritative, well-written basic treatment of extremely useful mathematical tool. Topics include Volterra Equations, Fredholm Equations, Symmetric Kernels and Orthogonal Systems of Functions, Types of Singular or Nonlinear Integral Equations, more. Advanced undergraduate to graduate level. Exercises. Bibliography.
In diesem Lehrbuch wird die klassische Lebesguesche Mass- und Integrationstheorie stringent entwickelt und dargestellt - trotz grossem Tiefgang ist das Buch dadurch gut lesbar. Die einzelnen Abschnitte werden ausserdem durch zahlreiche Beispiele und Aufgaben illustriert und erganzt. Das Buch ist somit sowohl zum Selbststudium als auch als Nachschlagewerk sehr gut geeignet. Grundkenntnisse aus Mengenlehre und Analysis sowie gelegentlich auch Linearer Algebra und Topologie werden vorausgesetzt. Bei Bedarf koennen diese in den beiden Buchern Grundkonzepte der Mathematik und Analysis einer Veranderlichen der Autoren U. Storch und H. Wiebe nachgelesen werden.
Dieses Buch vermittelt ein solides Grundwissen uber Masstheorie, indem es die wichtigsten Teile derselben in detaillierten, gut nachvollziehbaren Schritten darlegt sowie mit zahlreichen Beispielen verbindet. Viele UEbungsaufgaben unterschiedlicher Schwierigkeitsgrade unterstutzen dabei das Verstandnis des Stoffes. Zur Selbstkontrolle werden im Anhang Loesungen zu samtlichen UEbungsaufgaben angegeben. Anwendungen der Masstheorie in der Stochastik werden in Kapiteln uber bedingte Erwartungen und Likelihood-Funktionen aufgezeigt. Die benoetigten Vorkenntnisse sind auf ein Minimum beschrankt, da zu Beginn in ubersichtlicher Form notwendige Grundlagen aus Mengenlehre und Theorie der reellen Zahlen wiederholt und vertieft werden.
Das Buch ist eine kompakte, leicht lesbare Einfuhrung in die Mass- und Integrationstheorie samt Wahrscheinlichkeitstheorie, in der auch auf den fur das Verstandnis wichtigen Bezug zur klassischen Analysis, etwa in Abschnitten uber Funktionen von beschrankter Variation oder dem Hauptsatz der Differential- und Integralrechnung eingegangen wird. Trotz seines verhaltnismassig geringen Umfangs behandelt es alle wesentlichen Themen dieser Fachgebiete, wie Mengensysteme, Mengenfunktionen Massfortsetzung, Unabhangigkeit, Lebesgue-Stieltjes-Masse, Verteilungsfunktionen, messbare Funktionen, Zufallsvariable, Integral, Erwartungswert, Konvergenzsatze, Transformationssatze, Produktraume, Satz von Fubini, Zerlegungssatze, Funktionen von beschrankter Variation, Hauptsatz der Differential- und Integralrechnung, Lp-Raume, Bedingte Erwartungen, Gesetze der grossen Zahlen, Ergodensatze, Martingale, Verteilungskonvergenz, charakteristische Funktionen und die Grenzverteilungssatze von Lindeberg und Feller."
From Measures to Ito Integrals gives a clear account of measure theory, leading via L2-theory to Brownian motion, Ito integrals and a brief look at martingale calculus. Modern probability theory and the applications of stochastic processes rely heavily on an understanding of basic measure theory. This text is ideal preparation for graduate-level courses in mathematical finance and perfect for any reader seeking a basic understanding of the mathematics underpinning the various applications of Ito calculus.
This volume explores A.P. Morse's (1911-1984) development of a formal language for writing mathematics, his application of that language in set theory and mathematical analysis, and his unique perspective on mathematics. The editor brings together a variety of Morse's works in this compilation, including Morse's book A Theory of Sets, Second Edition (1986), in addition to material from another of Morse's publications, Web Derivatives, and notes for a course on analysis from the early 1950's. Because Morse provided very little in the way of explanation in his written works, the editor's commentary serves to outline Morse's goals, give informal explanations of Morse's formal language, and compare Morse's often unique approaches to more traditional approaches. Minor corrections to Morse's previously published works have also been incorporated into the text, including some updated axioms, theorems, and definitions. The editor's introduction thoroughly details the corrections and changes made and provides readers with valuable insight on Morse's methods. A.P. Morse's Set Theory and Analysis will appeal to graduate students and researchers interested in set theory and analysis who also have an interest in logic. Readers with a particular interest in Morse's unique perspective and in the history of mathematics will also find this book to be of interest.
Now in its second edition, this textbook serves as an introduction to probability and statistics for non-mathematics majors who do not need the exhaustive detail and mathematical depth provided in more comprehensive treatments of the subject. The presentation covers the mathematical laws of random phenomena, including discrete and continuous random variables, expectation and variance, and common probability distributions such as the binomial, Poisson, and normal distributions. More classical examples such as Montmort's problem, the ballot problem, and Bertrand's paradox are now included, along with applications such as the Maxwell-Boltzmann and Bose-Einstein distributions in physics. Key features in new edition: * 35 new exercises * Expanded section on the algebra of sets * Expanded chapters on probabilities to include more classical examples * New section on regression * Online instructors' manual containing solutions to all exercises< Advanced undergraduate and graduate students in computer science, engineering, and other natural and social sciences with only a basic background in calculus will benefit from this introductory text balancing theory with applications. Review of the first edition: This textbook is a classical and well-written introduction to probability theory and statistics. ... the book is written 'for an audience such as computer science students, whose mathematical background is not very strong and who do not need the detail and mathematical depth of similar books written for mathematics or statistics majors.' ... Each new concept is clearly explained and is followed by many detailed examples. ... numerous examples of calculations are given and proofs are well-detailed." (Sophie Lemaire, Mathematical Reviews, Issue 2008 m)
This textbook provides a mathematical introduction to linear systems, with a focus on the continuous-time models that arise in engineering applications such as electrical circuits and signal processing. The book introduces linear systems via block diagrams and the theory of the Laplace transform, using basic complex analysis. The book mainly covers linear systems with finite-dimensional state spaces. Graphical methods such as Nyquist plots and Bode plots are presented alongside computational tools such as MATLAB. Multiple-input multiple-output (MIMO) systems, which arise in modern telecommunication devices, are discussed in detail. The book also introduces orthogonal polynomials with important examples in signal processing and wireless communication, such as Telatar's model for multiple antenna transmission. One of the later chapters introduces infinite-dimensional Hilbert space as a state space, with the canonical model of a linear system. The final chapter covers modern applications to signal processing, Whittaker's sampling theorem for band-limited functions, and Shannon's wavelet. Based on courses given for many years to upper undergraduate mathematics students, the book provides a systematic, mathematical account of linear systems theory, and as such will also be useful for students and researchers in engineering. The prerequisites are basic linear algebra and complex analysis.
This volume comprises selected papers presented at the Volterra Centennial Symposium and is dedicated to Volterra and the contribution of his work to the study of systems - an important concept in modern engineering. Vito Volterra began his study of integral equations at the end of the nineteenth century and this was a significant development in the theory of integral equations and nonlinear functional analysis. Volterra series are of interest and use in pure and applied mathematics and engineering.
Based on proceedings of the International Conference on Integral Methods in Science and Engineering, this collection of papers addresses the solution of mathematical problems by integral methods in conjunction with approximation schemes from various physical domains. Topics and applications include: wavelet expansions, reaction-diffusion systems, variational methods , fracture theory, boundary value problems at resonance, micromechanics, fluid mechanics, combustion problems, nonlinear problems, elasticity theory, and plates and shells.
This book presents the major developments in this field with emphasis on application of path integration methods in diverse areas. After introducing the concept of path integrals, related topics like random walk, Brownian motion and Wiener integrals are discussed. Several techniques of path integration including global and local time transformations, numerical methods as well as approximation schemes are presented. The book provides a proper perspective of some of the most recent exact results and approximation schemes for practical applications.
Equations of Mathematical Diffraction Theory focuses on the
comparative analysis and development of efficient analytical
methods for solving equations of mathematical diffraction theory.
Following an overview of some general properties of integral and
differential operators in the context of the linear theory of
diffraction processes, the authors provide estimates of the
operator norms for various ranges of the wave number variation, and
then examine the spectral properties of these operators. They also
present a new analytical method for constructing asymptotic
solutions of boundary integral equations in mathematical
diffraction theory for the high-frequency case.
|
You may like...
One-dimensional Linear Singular Integral…
Israel Gohberg, Naum IA. Krupnick, …
Hardcover
R2,394
Discovery Miles 23 940
Generalized Radon Transforms And Imaging…
Gaik Ambartsoumian
Hardcover
R2,144
Discovery Miles 21 440
Approximation by Max-Product Type…
Barnabas Bede, Lucian Coroianu, …
Hardcover
R3,591
Discovery Miles 35 910
Integral Methods in Science and…
Christian Constanda, Matteo Dalla Riva, …
Hardcover
R3,441
Discovery Miles 34 410
Calculus for Engineering Students…
Jesus Martin Vaquero, Michael Carr, …
Paperback
R2,162
Discovery Miles 21 620
Theory of Sobolev Multipliers - With…
Vladimir Maz'ya, Tatyana O. Shaposhnikova
Hardcover
R5,939
Discovery Miles 59 390
Application of Holomorphic Functions in…
Klaus Gurlebeck, Klaus Habetha, …
Hardcover
R3,840
Discovery Miles 38 400
|