![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Integral equations
This textbook introduces readers to the fundamental notions of modern probability theory. The only prerequisite is a working knowledge in real analysis. Highlighting the connections between martingales and Markov chains on one hand, and Brownian motion and harmonic functions on the other, this book provides an introduction to the rich interplay between probability and other areas of analysis. Arranged into three parts, the book begins with a rigorous treatment of measure theory, with applications to probability in mind. The second part of the book focuses on the basic concepts of probability theory such as random variables, independence, conditional expectation, and the different types of convergence of random variables. In the third part, in which all chapters can be read independently, the reader will encounter three important classes of stochastic processes: discrete-time martingales, countable state-space Markov chains, and Brownian motion. Each chapter ends with a selection of illuminating exercises of varying difficulty. Some basic facts from functional analysis, in particular on Hilbert and Banach spaces, are included in the appendix. Measure Theory, Probability, and Stochastic Processes is an ideal text for readers seeking a thorough understanding of basic probability theory. Students interested in learning more about Brownian motion, and other continuous-time stochastic processes, may continue reading the author's more advanced textbook in the same series (GTM 274).
The Proceedings of the Fifth International Conference on Integral Meth ods in Science and Engineering, form a collection of papers addressing the solution of mathematical problems from various physical domains b y integral methods in conjunction with various approximation schemes. Written by acknowledged experts, these peer-reviewed papers offer rece nt developments in both theory and application valuable to applied mat hematicians, engineers, and physicists.
This volume comprises selected papers presented at the Volterra Centennial Symposium and is dedicated to Volterra and the contribution of his work to the study of systems - an important concept in modern engineering. Vito Volterra began his study of integral equations at the end of the nineteenth century and this was a significant development in the theory of integral equations and nonlinear functional analysis. Volterra series are of interest and use in pure and applied mathematics and engineering.
The effectiveness of dual integral equations for handling mixed
boundary value problems has established them as an important tool
for applied mathematicians. Their many applications in mathematical
physics have prompted extensive research over the last 25 years,
and many researchers have made significant contributions to the
methodology of solving and to the applications of dual integral
equations. However, until now, much of this work has been available
only in the form of research papers scattered throughout different
journals.
Based on proceedings of the International Conference on Integral Methods in Science and Engineering, this collection of papers addresses the solution of mathematical problems by integral methods in conjunction with approximation schemes from various physical domains. Topics and applications include: wavelet expansions, reaction-diffusion systems, variational methods , fracture theory, boundary value problems at resonance, micromechanics, fluid mechanics, combustion problems, nonlinear problems, elasticity theory, and plates and shells.
This book presents the major developments in this field with emphasis on application of path integration methods in diverse areas. After introducing the concept of path integrals, related topics like random walk, Brownian motion and Wiener integrals are discussed. Several techniques of path integration including global and local time transformations, numerical methods as well as approximation schemes are presented. The book provides a proper perspective of some of the most recent exact results and approximation schemes for practical applications.
Equations of Mathematical Diffraction Theory focuses on the
comparative analysis and development of efficient analytical
methods for solving equations of mathematical diffraction theory.
Following an overview of some general properties of integral and
differential operators in the context of the linear theory of
diffraction processes, the authors provide estimates of the
operator norms for various ranges of the wave number variation, and
then examine the spectral properties of these operators. They also
present a new analytical method for constructing asymptotic
solutions of boundary integral equations in mathematical
diffraction theory for the high-frequency case.
This book deals with the theory and some applications of integral transforms that involve integration with respect to an index or parameter of a special function of hypergeometric type as the kernel (index transforms). The basic index transforms are considered, such as the Kontorovich-Lebedev transform, the Mehler-Fock transform, the Olevskii Transform and the Lebedev-Skalskaya transforms. The Lp theory of index transforms is discussed, and new index transforms and convolution constructions are demonstrated. For the first time, the essentially multidimensional Kontorovich-Lebedev transform is announced. General index transform formulae are obtained. The connection between the multidimensional index kernels and G and H functions of several variables is presented. The book is self-contained, and includes a list of symbols with definitions, author and subject indices, and an up-to-date bibliography.This work will be of interest to researchers and graudate students in the mathematical and physical sciences whose work involves integral transforms and special functions.
Infinitesimal analysis, once a synonym for calculus, is now viewed as a technique for studying the properties of an arbitrary mathematical object by discriminating between its standard and nonstandard constituents. Resurrected by A. Robinson in the early 1960's with the epithet 'nonstandard', infinitesimal analysis not only has revived the methods of infinitely small and infinitely large quantities, which go back to the very beginning of calculus, but also has suggested many powerful tools for research in every branch of modern mathematics. The book sets forth the basics of the theory, as well as the most recent applications in, for example, functional analysis, optimization, and harmonic analysis. The concentric style of exposition enables this work to serve as an elementary introduction to one of the most promising mathematical technologies, while revealing up-to-date methods of monadology and hyperapproximation. This is a companion volume to the earlier works on nonstandard methods of analysis by A.G. Kusraev and S.S. Kutateladze (1999), ISBN 0-7923-5921-6 and Nonstandard Analysis and Vector Lattices edited by S.S. Kutateladze (2000), ISBN 0-7923-6619-0 |
![]() ![]() You may like...
Density Evolution Under Delayed Dynamics…
Jerome Losson, Michael C. Mackey, …
Hardcover
R2,927
Discovery Miles 29 270
Positivity and its Applications…
Eder Kikianty, Mokhwetha Mabula, …
Hardcover
R5,491
Discovery Miles 54 910
Weighted Polynomial Approximation and…
Peter Junghanns, Giuseppe Mastroianni, …
Hardcover
R4,520
Discovery Miles 45 200
The Rademacher System in Function Spaces
Sergey V. Astashkin
Hardcover
R4,173
Discovery Miles 41 730
|