![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Integral equations
This text is a rigorous introduction to ergodic theory, developing the machinery of conditional measures and expectations, mixing, and recurrence. Beginning by developing the basics of ergodic theory and progressing to describe some recent applications to number theory, this book goes beyond the standard texts in this topic. Applications include Weyl's polynomial equidistribution theorem, the ergodic proof of Szemeredi's theorem, the connection between the continued fraction map and the modular surface, and a proof of the equidistribution of horocycle orbits. "Ergodic Theory with a view towards Number Theory" will appeal to mathematicians with some standard background in measure theory and functional analysis. No background in ergodic theory or Lie theory is assumed, and a number of exercises and hints to problems are included, making this the perfect companion for graduate students and researchers in ergodic theory, homogenous dynamics or number theory.
This book provides a self-contained introduction to convex geometry in Euclidean space. After covering the basic concepts and results, it develops Brunn-Minkowski theory, with an exposition of mixed volumes, the Brunn-Minkowski inequality, and some of its consequences, including the isoperimetric inequality. Further central topics are then treated, such as surface area measures, projection functions, zonoids, and geometric valuations. Finally, an introduction to integral-geometric formulas in Euclidean space is provided. The numerous exercises and the supplementary material at the end of each section form an essential part of the book. Convexity is an elementary and natural concept. It plays a key role in many mathematical fields, including functional analysis, optimization, probability theory, and stochastic geometry. Paving the way to the more advanced and specialized literature, the material will be accessible to students in the third year and can be covered in one semester.
There has in recent years been a remarkable growth of interest in the area of discrete integrable systems. Much progress has been made by applying symmetry groups to the study of differential equations, and connections have been made to other topics such as numerical methods, cellular automata and mathematical physics. This volume comprises state of the art articles from almost all the leading workers in this important and rapidly developing area, making it a necessary resource for all researchers interested in discrete integrable systems or related subjects.
From the reviews: "... My general impression is of a particularly nice book, with a well-balanced bibliography, recommended!"Mededelingen van Het Wiskundig Genootschap, 1995"... The authors offer here an up to date guide to the topic and its main applications, including a number of new results. It is very convenient for the reader, a carefully prepared and extensive bibliography ... makes it easy to find the necessary details when needed. The books (EMS 6 and EMS 39) describe a lot of interesting topics. ... Both volumes are a very valuable addition to the library of any mathematician or physicist interested in modern mathematical analysis."European Mathematical Society Newsletter, 1994
This book shows the importance of studying semilocal convergence in iterative methods through Newton's method and addresses the most important aspects of the Kantorovich's theory including implicated studies. Kantorovich's theory for Newton's method used techniques of functional analysis to prove the semilocal convergence of the method by means of the well-known majorant principle. To gain a deeper understanding of these techniques the authors return to the beginning and present a deep-detailed approach of Kantorovich's theory for Newton's method, where they include old results, for a historical perspective and for comparisons with new results, refine old results, and prove their most relevant results, where alternative approaches leading to new sufficient semilocal convergence criteria for Newton's method are given. The book contains many numerical examples involving nonlinear integral equations, two boundary value problems and systems of nonlinear equations related to numerous physical phenomena. The book is addressed to researchers in computational sciences, in general, and in approximation of solutions of nonlinear problems, in particular.
From Measures to Ito Integrals gives a clear account of measure theory, leading via L2-theory to Brownian motion, Ito integrals and a brief look at martingale calculus. Modern probability theory and the applications of stochastic processes rely heavily on an understanding of basic measure theory. This text is ideal preparation for graduate-level courses in mathematical finance and perfect for any reader seeking a basic understanding of the mathematics underpinning the various applications of Ito calculus.
This book collects together lectures by some of the leaders in the field of partial differential equations and geometric measure theory. It features a wide variety of research topics in which a crucial role is played by the interaction of fine analytic techniques and deep geometric observations, combining the intuitive and geometric aspects of mathematics with analytical ideas and variational methods. The problems addressed are challenging and complex, and often require the use of several refined techniques to overcome the major difficulties encountered. The lectures, given during the course "Partial Differential Equations and Geometric Measure Theory'' in Cetraro, June 2-7, 2014, should help to encourage further research in the area. The enthusiasm of the speakers and the participants of this CIME course is reflected in the text.
Ordered vector spaces and cones made their debut in mathematics at the beginning of the twentieth century. They were developed in parallel (but from a different perspective) with functional analysis and operator theory. Before the 1950s, ordered vector spaces appeared in the literature in a fragmented way. Their systematic study began around the world after 1950 mainly through the efforts of the Russian, Japanese, German, and Dutch schools. Since cones are being employed to solve optimization problems, the theory of ordered vector spaces is an indispensable tool for solving a variety of applied problems appearing in several diverse areas, such as engineering, econometrics, and the social sciences. For this reason this theory plays a prominent role not only in functional analysis but also in a wide range of applications. This is a book about a modern perspective on cones and ordered vector spaces. It includes material that has not been presented earlier in a monograph or a textbook. With many exercises of varying degrees of difficulty, the book is suitable for graduate courses. Most of the new topics currently discussed in the book have their origins in problems from economics and finance. Therefore, the book will be valuable to any researcher and graduate student who works in mathematics, engineering, economics, finance, and any other field that uses optimization techniques.
A rigorous introduction to the abstract theory of partial differential equations progresses from the theory of distribution and Sobolev spaces to Fredholm operations, the Schauder fixed point theorem and Bochner integrals.
Professor Arnold is a prolific and versatile mathematician who has done striking work in differential equations and geometrical aspects of analysis. In this volume are collected seven of his survey articles from Russian Mathematical Surveys on singularity theory, the area to which he has made most contribution. These surveys contain Arnold's own analysis and synthesis of a decade's work. All those interested in singularity theory will find this an invaluable compilation. Professor C. T. C. Wall has written an introduction outlining the significance and content of the articles.
Intended as a self-contained introduction to measure theory, this textbook provides a comprehensive treatment of integration on locally compact Hausdorff spaces, the analytic and Borel subsets of Polish spaces, and Haar measures on locally compact groups. This second edition provides the reader with a broad perspective on measure theory through additional topics such as the Kurzweil-Henstock integral, the Banach-Tarski paradox, a proof of the existence of liftings, the Daniell integral. In addition, applications and introductions to other related areas such as measure-theoretic probability theory are also included in this new edition. Measure Theory provides a solid background for study in both harmonic analysis and probability theory and is an excellent resource for advanced undergraduate and graduate students in mathematics. The prerequisites are courses in topology and analysis, and the appendices present a thorough review of essential background material.
1. Historical Remarks Convex Integration theory, ?rst introduced by M. Gromov [17], is one of three general methods in immersion-theoretic topology for solving a broad range of problems in geometry and topology. The other methods are: (i) Removal of Singularities, introduced by M. Gromov and Y. Eliashberg [8]; (ii) the covering homotopy method which, following M. Gromov's thesis [16], is also referred to as the method of sheaves. The covering homotopy method is due originally to S. Smale [36] who proved a crucial covering homotopy result in order to solve the classi?cation problem for immersions of spheres in Euclidean space. These general methods are not linearly related in the sense that succ- sive methods subsumed the previous methods. Each method has its own distinct foundation, based on an independent geometrical or analytical insight. Con- quently, each method has a range of applications to problems in topology that are best suited to its particular insight. For example, a distinguishing feature of ConvexIntegrationtheoryisthatitappliestosolveclosed relationsinjetspaces, including certain general classes of underdetermined non-linear systems of par- 1 tial di?erential equations. As a case of interest, the Nash-Kuiper C -isometric immersion theorem can be reformulated and proved using Convex Integration theory (cf. Gromov [18]). No such results on closed relations in jet spaces can be proved by means of the other two methods. On the other hand, many classical results in immersion-theoretic topology, such as the classi?cation of immersions, are provable by all three methods.
The main objective of this monograph is the study of a class of stochastic differential systems having unbounded coefficients, both in finite and in infinite dimension. We focus our attention on the regularity properties of the solutions and hence on the smoothing effect of the corresponding transition semigroups in the space of bounded and uniformly continuous functions. As an application of these results, we study the associated Kolmogorov equations, the large-time behaviour of the solutions and some stochastic optimal control problems together with the corresponding Hamilton- Jacobi-Bellman equations. In the literature there exists a large number of works (mostly in finite dimen sion) dealing with these arguments in the case of bounded Lipschitz-continuous coefficients and some of them concern the case of coefficients having linear growth. Few papers concern the case of non-Lipschitz coefficients, but they are mainly re lated to the study of the existence and the uniqueness of solutions for the stochastic system. Actually, the study of any further properties of those systems, such as their regularizing properties or their ergodicity, seems not to be developed widely enough. With these notes we try to cover this gap."
This book develops a new theory of multi-parameter singular integrals associated with Carnot-Caratheodory balls. Brian Street first details the classical theory of Calderon-Zygmund singular integrals and applications to linear partial differential equations. He then outlines the theory of multi-parameter Carnot-Caratheodory geometry, where the main tool is a quantitative version of the classical theorem of Frobenius. Street then gives several examples of multi-parameter singular integrals arising naturally in various problems. The final chapter of the book develops a general theory of singular integrals that generalizes and unifies these examples. This is one of the first general theories of multi-parameter singular integrals that goes beyond the product theory of singular integrals and their analogs. "Multi-parameter Singular Integrals" will interest graduate students and researchers working in singular integrals and related fields."
The book uses classical problems to motivate a historical development of the integration theories of Riemann, Lebesgue, Henstock-Kurzweil and McShane, showing how new theories of integration were developed to solve problems that earlier integration theories could not handle. It develops the basic properties of each integral in detail and provides comparisons of the different integrals. The chapters covering each integral are essentially independent and could be used separately in teaching a portion of an introductory real analysis course. There is a sufficient supply of exercises to make this book useful as a textbook.
In diesem Lehrbuch wird die klassische Lebesguesche Mass- und Integrationstheorie stringent entwickelt und dargestellt - trotz grossem Tiefgang ist das Buch dadurch gut lesbar. Die einzelnen Abschnitte werden ausserdem durch zahlreiche Beispiele und Aufgaben illustriert und erganzt. Das Buch ist somit sowohl zum Selbststudium als auch als Nachschlagewerk sehr gut geeignet. Grundkenntnisse aus Mengenlehre und Analysis sowie gelegentlich auch Linearer Algebra und Topologie werden vorausgesetzt. Bei Bedarf koennen diese in den beiden Buchern Grundkonzepte der Mathematik und Analysis einer Veranderlichen der Autoren U. Storch und H. Wiebe nachgelesen werden.
Fractional calculus was first developed by pure mathematicians in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications for these concepts in their areas. However there has traditionally been little interaction between these two communities. In particular, typical mathematical works provide extensive findings on aspects with comparatively little significance in applications, and the engineering literature often lacks mathematical detail and precision. This book bridges the gap between the two communities. It concentrates on the class of fractional derivatives most important in applications, the Caputo operators, and provides a self-contained, thorough and mathematically rigorous study of their properties and of the corresponding differential equations. The text is a useful tool for mathematicians and researchers from the applied sciences alike. It can also be used as a basis for teaching graduate courses on fractional differential equations.
Differential and integral equations involve important mathematical
techniques, and as such will be encountered by mathematicians, and
physical and social scientists, in their undergraduate courses.
This text provides a clear, comprehensive guide to first- and
second-order ordinary and partial differential equations, whilst
introducing important and useful basic material on integral
equations. Readers will encounter detailed discussion of the wave,
heat and Laplace equations, of Green's functions and their
application to the Sturm-Liouville equation, and how to use series
solutions, transform methods and phase-plane analysis. The calculus
of variations will take them further into the world of applied
analysis.
Dieses Buch vermittelt ein solides Grundwissen uber Masstheorie, indem es die wichtigsten Teile derselben in detaillierten, gut nachvollziehbaren Schritten darlegt sowie mit zahlreichen Beispielen verbindet. Viele UEbungsaufgaben unterschiedlicher Schwierigkeitsgrade unterstutzen dabei das Verstandnis des Stoffes. Zur Selbstkontrolle werden im Anhang Loesungen zu samtlichen UEbungsaufgaben angegeben. Anwendungen der Masstheorie in der Stochastik werden in Kapiteln uber bedingte Erwartungen und Likelihood-Funktionen aufgezeigt. Die benoetigten Vorkenntnisse sind auf ein Minimum beschrankt, da zu Beginn in ubersichtlicher Form notwendige Grundlagen aus Mengenlehre und Theorie der reellen Zahlen wiederholt und vertieft werden.
Book 7 in the Princeton Mathematical Series. Originally published in 1961. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Jurgen Beetz fuhrt zuerst in den Ursprung der erdachten Geschichten der Mathematik aus der Steinzeit ein. Im Anschluss daran stellt er die zentrale Fragestellung der "Infinitesimalrechnung" anhand eines einfachen Beispiels dar. Dann erlautert der Autor die Grundproblematik des Integrierens: die Flache zwischen einer beliebigen Stelle einer Funktion y=f(x) und der x-Achse festzustellen. Es gibt einige bekannte Satze, z. B. den Mittelwertsatz und den Hauptsatz der Integralrechnung. Hauptanwendungsgebiet der Integralrechnung ist das Loesen von Differentialgleichungen: Gleichungen, die Funktionen und ihre Ableitungen nebeneinander enthalten.
Das Buch ist eine kompakte, leicht lesbare Einfuhrung in die Mass- und Integrationstheorie samt Wahrscheinlichkeitstheorie, in der auch auf den fur das Verstandnis wichtigen Bezug zur klassischen Analysis, etwa in Abschnitten uber Funktionen von beschrankter Variation oder dem Hauptsatz der Differential- und Integralrechnung eingegangen wird. Trotz seines verhaltnismassig geringen Umfangs behandelt es alle wesentlichen Themen dieser Fachgebiete, wie Mengensysteme, Mengenfunktionen Massfortsetzung, Unabhangigkeit, Lebesgue-Stieltjes-Masse, Verteilungsfunktionen, messbare Funktionen, Zufallsvariable, Integral, Erwartungswert, Konvergenzsatze, Transformationssatze, Produktraume, Satz von Fubini, Zerlegungssatze, Funktionen von beschrankter Variation, Hauptsatz der Differential- und Integralrechnung, Lp-Raume, Bedingte Erwartungen, Gesetze der grossen Zahlen, Ergodensatze, Martingale, Verteilungskonvergenz, charakteristische Funktionen und die Grenzverteilungssatze von Lindeberg und Feller."
Die Anwendung der Laplace-Transformation in den Naturwissenschaften und der Technik gewinnt standig an Bedeutung. Dies fuhrt zwangslaufig dazu, dass diese Methode in die Stoffplane fur Mathematik der meisten Fachrichtungen an Technischen Hochschulen und Fachhochschulen aufgenommen werden wird. Im Hinblick auf ihre Verwendung in anderen Fachern, erscheint es sinnvoll, mit dem Studium moglichst fruh zu beginnen, spatestens jedoch im dritten Semester. Dies wiederum bedingt, dass nur Kenntnisse vorausgesetzt werden konnen, die im ersten und zweiten Semester vermittelt wurden. Unter diesem Gesichtspunkt ist dieses Arbeits- und ubungsbuch entstanden. Es soll dem Studenten vom dritten Semester aufwarts ermoglichen, so weit in die Theorie und Praxis der Laplace-Transformation vorzudringen, dass er gewohnliche Differentialgleichungen mit konstanten Koeffizienten und Differentialgleichungssysteme, wie sie bei der Behandlung von Schwingungsproblemen auftreten, selbstandig losen kann. Daruberhinaus soll der Stu dent in die Lage versetzt werden, mit fortschreitender Kenntnis in der Mathematik, weiter fuhrende Werke uber die Theorie der Laplace-Transformation zu lesen. Das Buch ist folgendermassen aufgebaut: Im ersten Kapitel werden in zahlreichen Beispielen Funktionen in den Bildraum transfor miert, um den Leser mit dem Umgang mit Laplace -Transformierten vertraut zu machen. Im zweiten Kapitel werden die Eigenschaften der Laplace-Transformation untersucht. Im dritten Kapitel wird die Laplace-Transformation zur Losung von Differentialgleichun gen benutzt. Im vierten Kapitel steht die Anwendung auf technische Probleme im Vordergrund. Alle Beispiele im Text sind ausflihrlich durchgerechnet. Am Schluss jeden Kapitels sind Aufgaben gestellt, deren Losungen im Anhang angegeben werden, so dass der Leser uber prufen kann, ob er den Inhalt des Kapitels verstanden hat."
Angesichts der derzeitigen Situation an der Universitaten, den vielfaltigen Belastungen durch Selbstverwaltungsaufgaben und Lehrveranstaltungen, stellt die Anfertigung einer grosseren Monographie ein Unterfangen dar, das sich kaum noch realisieren lasst. Das gilt um so mehr, wenn es sich wie im vorliegenden Fall um eine sehr komplexe, gleichzeitig eng mit zwei Teildis ziplinen verbundene Thematik handelt und versucht werden soll, neue Per spektiven aufzuzeigen und neue Anstosse zu geben. Mein besonderer Dank gilt deswegen dem Leiter der Abteilung I - In nen- und EG-Politik, Politische Theorie - des Instituts fur Politikwissen schaft der Universitat Tubingen, Herrn Prof. Dr. Rudolf Hrbek, der mich zu dem Vorhaben ermuntert und mir im universitaren Alltagsbetrieb die not wendigen Freiraume fur seine Verwirklichung verschafft hat. Der Arbeitszu sammenhang der Abteilung I hat daruber hinaus aber auch insofern zu der vorliegenden Studie beigetragen, als eine ganze Reihe von in diesem Rahmen entstandenen Arbeiten die empirische Basis fur die nachfolgend prasentierten Uberlegungen wesentlich verbreitern helfen haben. Dies gilt namentlich fur die Magisterarbeiten von Frank und Peter Berg zur Umweltpolitik, Karin Heiniein zur Wahrungspolitik, Christian Roth zur Sozial- und Jurgen Wagner zur Medienpolitik der EU."
|
![]() ![]() You may like...
Reliability Engineering and…
Coen van Gulijk, Elena Zaitseva
Hardcover
R4,247
Discovery Miles 42 470
Fibre Channel - Connection To The Future
Fibrechannelindustryassoc
Hardcover
R796
Discovery Miles 7 960
Hybrid Fault Tolerance Techniques to…
Jose Rodrigo Azambuja, Fernanda Kastensmidt, …
Hardcover
R2,851
Discovery Miles 28 510
Embedded Systems Design Based on Formal…
Ivan Radojevic, Zoran Salcic
Hardcover
R2,877
Discovery Miles 28 770
Energy-Efficient Fault-Tolerant Systems
Jimson Mathew, Rishad A. Shafik, …
Hardcover
R5,095
Discovery Miles 50 950
|