Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Integral equations
The aim of this book is to develop a new approach which we called the hyper geometric one to the theory of various integral transforms, convolutions, and their applications to solutions of integro-differential equations, operational calculus, and evaluation of integrals. We hope that this simple approach, which will be explained below, allows students, post graduates in mathematics, physicists and technicians, and serious mathematicians and researchers to find in this book new interesting results in the theory of integral transforms, special functions, and convolutions. The idea of this approach can be found in various papers of many authors, but systematic discussion and development is realized in this book for the first time. Let us explain briefly the basic points of this approach. As it is known, in the theory of special functions and its applications, the hypergeometric functions play the main role. Besides known elementary functions, this class includes the Gauss's, Bessel's, Kummer's, functions et c. In general case, the hypergeometric functions are defined as a linear combinations of the Mellin-Barnes integrals. These ques tions are extensively discussed in Chapter 1. Moreover, the Mellin-Barnes type integrals can be understood as an inversion Mellin transform from the quotient of products of Euler's gamma-functions. Thus we are led to the general construc tions like the Meijer's G-function and the Fox's H-function."
The first formulations of linear boundary value problems for analytic functions were due to Riemann (1857). In particular, such problems exhibit as boundary conditions relations among values of the unknown analytic functions which have to be evaluated at different points of the boundary. Singular integral equations with a shift are connected with such boundary value problems in a natural way. Subsequent to Riemann's work, D. Hilbert (1905), C. Haseman (1907) and T. Carleman (1932) also considered problems of this type. About 50 years ago, Soviet mathematicians began a systematic study of these topics. The first works were carried out in Tbilisi by D. Kveselava (1946-1948). Afterwards, this theory developed further in Tbilisi as well as in other Soviet scientific centers (Rostov on Don, Ka zan, Minsk, Odessa, Kishinev, Dushanbe, Novosibirsk, Baku and others). Beginning in the 1960s, some works on this subject appeared systematically in other countries, e. g., China, Poland, Germany, Vietnam and Korea. In the last decade the geography of investigations on singular integral operators with shift expanded significantly to include such countries as the USA, Portugal and Mexico. It is no longer easy to enumerate the names of the all mathematicians who made contributions to this theory. Beginning in 1957, the author also took part in these developments. Up to the present, more than 600 publications on these topics have appeared."
Basic Real Analysis demonstrates the richness of real analysis, giving students an introduction both to mathematical rigor and to the deep theorems and counter examples that arise from such rigor. In this modern and systematic text, all the touchstone results and fundamentals are carefully presented in a style that requires little prior familiarity with proofs or mathematical language. With its many examples, exercises and broad view of analysis, this work is ideal for senior undergraduates and beginning graduate students, either in the classroom or for self-study.
One service mathematici has rendered the 'Et moi, ... si j'avait IU comment en revenir. je n'y serais point alle.' human race. It has put common sense back Jules Verne where it belong., on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense', Eric T. Bell able to do something with it. O. H eaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other pans and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'el;re of this series."
Limit theorems for random sequences may conventionally be divided into two large parts, one of them dealing with convergence of distributions (weak limit theorems) and the other, with almost sure convergence, that is to say, with asymptotic prop erties of almost all sample paths of the sequences involved (strong limit theorems). Although either of these directions is closely related to another one, each of them has its own range of specific problems, as well as the own methodology for solving the underlying problems. This book is devoted to the second of the above mentioned lines, which means that we study asymptotic behaviour of almost all sample paths of linearly transformed sums of independent random variables, vectors, and elements taking values in topological vector spaces. In the classical works of P.Levy, A.Ya.Khintchine, A.N.Kolmogorov, P.Hartman, A.Wintner, W.Feller, Yu.V.Prokhorov, and M.Loeve, the theory of almost sure asymptotic behaviour of increasing scalar-normed sums of independent random vari ables was constructed. This theory not only provides conditions of the almost sure convergence of series of independent random variables, but also studies different ver sions of the strong law of large numbers and the law of the iterated logarithm. One should point out that, even in this traditional framework, there are still problems which remain open, while many definitive results have been obtained quite recently."
The NATO Advanced Study Institute "Microlocal Analysis and Spectral The ory" was held in Tuscany (Italy) at Castelvecchio Pascoli, in the district of Lucca, hosted by the international vacation center "11 Ciocco," from September 23 to October 3, 1996. The Institute recorded the considerable progress realized recently in the field of Microlocal Analysis. In a broad sense, Microlocal Analysis is the modern version of the classical Fourier technique in solving partial differential equa tions, where now the localization proceeding takes place with respect to the dual variables too. Precisely, through the tools of pseudo-differential operators, wave-front sets and Fourier integral operators, the general theory of the lin ear partial differential equations is now reaching a mature form, in the frame of Schwartz distributions or other generalized functions. At the same time, Microlocal Analysis has grown up into a definite and independent part of Math ematical Analysis, with other applications all around Mathematics and Physics, one major theme being Spectral Theory for Schrodinger equation in Quantum Mechanics."
Exactly one hundred years ago, in 1895, G. de Vries, under the supervision of D. J. Korteweg, defended his thesis on what is now known as the Korteweg-de Vries Equation. They published a joint paper in 1895 in the Philosophical Magazine, entitled On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary wave', and, for the next 60 years or so, no other relevant work seemed to have been done. In the 1960s, however, research on this and related equations exploded. There are now some 3100 papers in mathematics and physics that contain a mention of the phrase Korteweg-de Vries equation' in their title or abstract, and there are thousands more in other areas, such as biology, chemistry, electronics, geology, oceanology, meteorology, etc. And, of course, the KdV equation is only one of what are now called (Liouville) completely integrable systems. The KdV and its relatives continually turn up in situations when one wishes to incorporate nonlinear and dispersive effects into wave-type phenomena. This centenary provides a unique occasion to survey as many different aspects of the KdV and related equations. The KdV equation has depth, subtlety, and a breadth of applications that make it a rarity deserving special attention and exposition.
* Good reference text; clusters well with other Birkhauser integral equations & integral methods books (Estrada and Kanwal, Kythe/Puri, Constanda, et al). * Includes many practical applications/techniques for applied mathematicians, physicists, engineers, grad students. * The contributors to the volume draw from a number of physical domains and propose diverse treatments for various mathematical models through the use of integration as an essential solution tool. * Physically meaningful problems in areas related to finite and boundary element techniques, conservation laws, hybrid approaches, ordinary and partial differential equations, and vortex methods are explored in a rigorous, accessible manner. * The new results provided are a good starting point for future exploitation of the interdisciplinary potential of integration as a unifying methodology for the investigation of mathematical models.
"This book collects in one volume the author's considerable results in the area of the summation of series and their representation in closed form, and details the techniques by which they have been obtained... the calculations are given in plenty of detail, and closely related work which has appeared in a variety of places is conveniently collected together." --The Australian Mathematical Society Gazette
This book considers signal processing and physical modeling meth ods for sound synthesis. Such methods are useful for example in mu sic synthesizers, computer sound cards, and computer games. Physical modeling synthesis has been commercialized for the first time about 10 years ago. Recently, it has been one of the most active research topics in musical acoustics and computer music. The authors of this book, Dr. Lutz Trautmann and Dr. Rudolf Rabenstein, are active researchers and inventors in the field of sound synthesis. Together they have developed a new synthesis technique, called the functional transformation method, which can be used for pro ducing musical sound in real time. Before this book, they have published over 20 papers on the topic in journals and conference proceedings. In this excellent textbook, the results are combined in a single volume. I believe that this will be considered an important step forward for the whole community.
Integral equations have wide applications in various fields, including continuum mechanics, potential theory, geophysics, electricity and magnetism, kinetic theory of gases, hereditary phenomena in physics and biology, renewal theory, quantum mechanics, radiation, optimization, optimal control systems, communication theory, mathematical economics, population genetics, queueing theory, and medicine. Computational Methods for Linear Integral Equations presents basic theoretical material that deals with numerical analysis, convergence, error estimates, and accuracy. The unique computational aspect leads the reader from theoretical and practical problems all the way through to computation with hands-on guidance for input files and the execution of computer programs. Features: * Offers all supporting Mathematica(R) files related to the book via the Internet at the authors' Web sites: www.math.uno.edu/fac/pkythe.html or www.math.uno.edu/fac/ppuri.html * Contains identification codes for problems, related methods, and computer programs that are cross-referenced throughout the book to make the connections easy to understand * Illustrates a how-to approach to computational work in the development of algorithms, construction of input files, timing, and accuracy analysis * Covers linear integral equations of Fredholm and Volterra types of the first and second kinds as well as associated singular integral equations, integro-differential equations, and eigenvalue problems * Provides clear, step-by-step guidelines for solving difficult and complex computational problems This book is an essential reference and authoritative resource for all professionals, graduate students, and researchers in mathematics, physical sciences, and engineering.Researchers interested in the numerical solution of integral equations will find its practical problem-solving style both accessible and useful for their work.
This book is an outgrowth of the sixth international conference on integral methods in science and engineering. The chapters focus on the solution of mathematical models from various physical domains, using integral methods in conjunction with approximation schemes. Integral Methods in Science and Engineering describes the construction and application of various analytic and numerical integration techniques. Problem solving in areas such as solid mechanics, fluid dynamics, thermoelasticity, plates and shells, liquid crystals, diffusion and diffraction theory, Hamiltonian systems, resonance, nonlinear waves, plasma, flight dynamics, and structural networks are presented in an accessible manner. The book offers a vehicle for the quick dissemination of new results in these domains, and will help create an ideal environment for investigative interdisciplinary study among a variety of research areas.Topics: * Offers an illustration by prominent researchers of efficient methods of solution with numerical results and rigorous analytic methods * Presents applications of integral methods to a wide variety of mathematical and physical problems * Provides new results in the study of various physical and mechanical models * A clear, concise focus on a class of methodologies rather than a specific field of study This book is a practical resource for a broad audience of professionals, researchers, and practitioners in applied mathematics, mechanical engineering, and theoretical physics, who are interested in current research in ordinary and partial differential equations, integral equations, numerical analysis, mechanics of solids, fluid mechanics, and mathematical physics. Graduate students will find this a helpful guide to the wide range of applications that integral methods have in science and engineering.
The aim of this work is to present in a unified approach a series of results concerning totally convex functions on Banach spaces and their applications to building iterative algorithms for computing common fixed points of mea surable families of operators and optimization methods in infinite dimen sional settings. The notion of totally convex function was first studied by Butnariu, Censor and Reich [31] in the context of the space lRR because of its usefulness for establishing convergence of a Bregman projection method for finding common points of infinite families of closed convex sets. In this finite dimensional environment total convexity hardly differs from strict convexity. In fact, a function with closed domain in a finite dimensional Banach space is totally convex if and only if it is strictly convex. The relevancy of total convexity as a strengthened form of strict convexity becomes apparent when the Banach space on which the function is defined is infinite dimensional. In this case, total convexity is a property stronger than strict convexity but weaker than locally uniform convexity (see Section 1.3 below). The study of totally convex functions in infinite dimensional Banach spaces was started in [33] where it was shown that they are useful tools for extrapolating properties commonly known to belong to operators satisfying demanding contractivity requirements to classes of operators which are not even mildly nonexpansive.
Infinite interval problems abound in nature and yet until now there has been no book dealing with such problems. The main reason for this seems to be that until the 1970's for the infinite interval problem all the theoretical results available required rather technical hypotheses and were applicable only to narrowly defined classes of problems. Thus scientists mainly offer~d and used special devices to construct the numerical solution assuming tacitly the existence of a solution. In recent years a mixture of classical analysis and modern fixed point theory has been employed to study the existence of solutions to infinite interval problems. This has resulted in widely applicable results. This monograph is a cumulation mainly of the authors' research over a period of more than ten years and offers easily verifiable existence criteria for differential, difference and integral equations over the infinite interval. An important feature of this monograph is that we illustrate almost all the results with examples. The plan of this monograph is as follows. In Chapter 1 we present the existence theory for second order boundary value problems on infinite intervals. We begin with several examples which model real world phenom ena. A brief history of the infinite interval problem is also included. We then present general existence results for several different types of boundary value problems. Here we note that for the infinite interval problem only two major approaches are available in the literature.
Harmonic Analysis in China is a collection of surveys and research papers written by distinguished Chinese mathematicians from within the People's Republic of China and expatriates. The book covers topics in analytic function spaces of several complex variables, integral transforms, harmonic analysis on classical Lie groups and manifolds, LP- estimates of the Cauchy-Riemann equations and wavelet transforms. The reader will also be able to trace the great influence of the late Professor Loo-keng Hua's ideas and methods on research into harmonic analysis on classical domains and the theory of functions of several complex variables. Western scientists will thus become acquainted with the unique features and future trends of harmonic analysis in China. Audience: Analysts, as well as engineers and physicists who use harmonic analysis.
Many special functions occuring in physics and partial differential equations can be represented by integral transformatIons: the fundamental solutions of many PDE's, Newton-Coulomb potentials, hypergeometric functions, Feynman integrals, initial data of (inverse) tomography problems, etc. The general picture of such transfor- mations is as follows. There is an analytic fibre bundle E --+ T, a differential form w on E, whose restrictions on the fibres are closed, and a family of cycles in these fibres, parametrized by the points of T and depending continuously on these points. Then the integral of the form w along these cycles is a function on the base. The analytic properties of such functions depend on the monodromy action, i.e., on the natural action of the fundamental group of the base in the homology of the fibre: this action on the integration cycles defines the ramification of the analytic continuation of our function. The study of this action (which is a purely topological problem) can answer questions about the analytic behaviour of the integral function, for instance, is this function single-valued or at least algebraic, what are the singular points of this function, and what is its asymptotics close to these points. In this book, we study such analytic properties of three famous classes of func- tions: the volume functions, which appear in the Archimedes-Newton problem on in- tegrable bodies; the Newton-Coulomb potentials, and the Green functions of hyperbolic equations (studied, in particular, in the Hada- mard-Petrovskii-Atiyah-Bott-Garding lacuna theory).
This is the first publication which follows an agreement by Kluwer Publishers with the Caribbean Mathematics Foundation (CMF), to publish the proceedings of its mathematical activities. To which one should add a disclaimer of sorts, namely that this volume is not the first in a series, because it is not first, and be cause neither party to the agreement construes these publications as elements of a series. Like the work of CMF, the arrangement between it and Kluwer Publishers, evolved gradually, empirically. CMF was created in 1988, and inaugurated with a conference on Ordered Algebraic Structures. Every year since there have been gatherings on a variety of mathematical topics: Locales and Topological Groups in 1989; Positive Operators in 1990; Finite Geometry and Abelian Groups in 1991; Semigroups of Operators last year. It should be stressed, however that in preparing for the first conference, there was no plan which might have augured what came after. One could say that one thing led to another, and one would be right enough.
This volume contains the Proceedings of the IABEM International Sym- posium on Boundary I~ntegrall Methods for Nonlinear Problems, held at the Certosa di Pontignano near Siena (Italy) on May 28 - June 3, 1995. The Symposium was sponsored by IABEM (International Association for Boundary Element Methods) and co-sponsored by IUTAM (International Union of Theoretical and Applied Mechanics). The members of the Scientific Committee of the Symposium are Heinz Antes (Germany) Satya N. Atluri (USA) Dimitri E. Beskos (Greece) Thomas Cruse (USA) Massimo Guiggiani (Italy) George C. Hsiao (USA) Shoichi Kobayashi (Japan) Gunther Kuhn (Germany) Vladimir G. Maz'ya (Sweden) Luigi Morino (Italy, co-organizer) Renzo Piva (Italy) Wolfgang L. Wendland (Germany, co-organizer) Pieter J. Zandbergen (The Netherlands) Franz Ziegler ( Austria, IUTAM representative) The contributions include mathematical issues on boundary integral equa- tions and boundary element methods as well as applications to fluid and solid mechanics and to heat transfer. The individual contributions are briefly reviewed in the following.
Since the appearance of seminal works by R. Merton, and F. Black and M. Scholes, stochastic processes have assumed an increasingly important role in the development of the mathematical theory of finance. This work examines, in some detail, that part of stochastic finance pertaining to option pricing theory. Thus the exposition is confined to areas of stochastic finance that are relevant to the theory, omitting such topics as futures and term-structure. This self-contained work begins with five introductory chapters on stochastic analysis, making it accessible to readers with little or no prior knowledge of stochastic processes or stochastic analysis. These chapters cover the essentials of Ito's theory of stochastic integration, integration with respect to semimartingales, Girsanov's Theorem, and a brief introduction to stochastic differential equations. Subsequent chapters treat more specialized topics, including option pricing in discrete time, continuous time trading, arbitrage, complete markets, European options (Black and Scholes Theory), American options, Russian options, discrete approximations, and asset pricing with stochastic volatility. In several chapters, new results are presented. A unique feature of the book is its emphasis on arbitrage, in particular, the relationship between arbitrage and equivalent martingale measures (EMM), and the derivation of necessary and sufficient conditions for no arbitrage (NA). {\it Introduction to Option Pricing Theory} is intended for students and researchers in statistics, applied mathematics, business, or economics, who have a background in measure theory and have completed probability theory at the intermediate level. The work lends itself to self-study, as well as to a one-semester course at the graduate level.
The theory of integral and integrodifferential equations has ad vanced rapidly over the last twenty years. Of course the question of existence is an age-old problem of major importance. This mono graph is a collection of some of the most advanced results to date in this field. The book is organized as follows. It is divided into twelve chap ters. Each chapter surveys a major area of research. Specifically, some of the areas considered are Fredholm and Volterra integral and integrodifferential equations, resonant and nonresonant problems, in tegral inclusions, stochastic equations and periodic problems. We note that the selected topics reflect the particular interests of the authors. Donal 0 'Regan Maria Meehan CHAPTER 1 INTRODUCTION AND PRELIMINARIES 1.1. Introduction The aim of this book is firstly to provide a comprehensive existence the ory for integral and integrodifferential equations, and secondly to present some specialised topics in integral equations which we hope will inspire fur ther research in the area. To this end, the first part of the book deals with existence principles and results for nonlinear, Fredholm and Volterra inte gral and integrodifferential equations on compact and half-open intervals, while selected topics (which reflect the particular interests of the authors) such as nonresonance and resonance problems, equations in Banach spaces, inclusions, and stochastic equations are presented in the latter part."
This book, written by our distinguished colleague and friend, Professor Han-Lin Chen of the Institute of Mathematics, Academia Sinica, Beijing, presents, for the first time in book form, his extensive work on complex harmonic splines with applications to wavelet analysis and the numerical solution of boundary integral equations. Professor Chen has worked in Ap proximation Theory and Computational Mathematics for over forty years. His scientific contributions are rich in variety and content. Through his publications and his many excellent Ph. D. students he has taken a leader ship role in the development of these fields within China. This new book is yet another important addition to Professor Chen's quality research in Computational Mathematics. In the last several decades, the theory of spline functions and their ap plications have greatly influenced numerous fields of applied mathematics, most notably, computational mathematics, wavelet analysis and geomet ric modeling. Many books and monographs have been published studying real variable spline functions with a focus on their algebraic, analytic and computational properties. In contrast, this book is the first to present the theory of complex harmonic spline functions and their relation to wavelet analysis with applications to the solution of partial differential equations and boundary integral equations of the second kind. The material presented in this book is unique and interesting. It provides a detailed summary of the important research results of the author and his group and as well as others in the field."
This book deals with evolutionary systems whose equation of state can be formulated as a linear Volterra equation in a Banach space. The main feature of the kernels involved is that they consist of unbounded linear operators. The aim is a coherent presentation of the state of art of the theory including detailed proofs and its applications to problems from mathematical physics, such as viscoelasticity, heat conduction, and electrodynamics with memory. The importance of evolutionary integral equations - which form a larger class than do evolution equations - stems from such applications and therefore special emphasis is placed on these. A number of models are derived and, by means of the developed theory, discussed thoroughly. An annotated bibliography containing 450 entries increases the book's value as an incisive reference text. --- This excellent book presents a general approach to linear evolutionary systems, with an emphasis on infinite-dimensional systems with time delays, such as those occurring in linear viscoelasticity with or without thermal effects. It gives a very natural and mature extension of the usual semigroup approach to a more general class of infinite-dimensional evolutionary systems. This is the first appearance in the form of a monograph of this recently developed theory. A substantial part of the results are due to the author, or are even new. (...) It is not a book that one reads in a few days. Rather, it should be considered as an investment with lasting value. (Zentralblatt MATH) In this book, the author, who has been at the forefront of research on these problems for the last decade, has collected, and in many places extended, the known theory for these equations. In addition, he has provided a framework that allows one to relate and evaluate diverse results in the literature. (Mathematical Reviews) This book constitutes a highly valuable addition to the existing literature on the theory of Volterra (evolutionary) integral equations and their applications in physics and engineering. (...) and for the first time the stress is on the infinite-dimensional case. (SIAM Reviews)
One service mathematics has rendered the l moil ..., Ii j'avait su comment en revenir, je n'y serais point aUe.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense'. Eric T. Bell able to do something with it. O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'(ftre of this series."
This book provides an extensive introduction to the numerical solution of a large class of integral equations. The initial chapters provide a general framework for the numerical analysis of Fredholm integral equations of the second kind, covering degenerate kernel, projection and Nystrom methods. Additional discussions of multivariable integral equations and iteration methods update the reader on the present state of the art in this area. The final chapters focus on the numerical solution of boundary integral equation (BIE) reformulations of Laplace's equation, in both two and three dimensions. Two chapters are devoted to planar BIE problems, which include both existing methods and remaining questions. Practical problems for BIE such as the set up and solution of the discretised BIE are also discussed. Each chapter concludes with a discussion of the literature and a large bibliography serves as an extended resource for students and researchers needing more information on solving particular integral equations.
'Et moi .... si favait su comment en revenir. One service mathematics bllS rendered the je n'y serais point aile.' human race. It hal put common sense back Jules Verne where it bdongs, on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense', able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thOUght. A highly necessary tool in a world where both feedback and non Iinearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series." |
You may like...
Periodic Solutions of First-Order…
Seshadev Padhi, John R. Graef, …
Hardcover
The Rademacher System in Function Spaces
Sergey V. Astashkin
Hardcover
R3,980
Discovery Miles 39 800
Schwarz Methods and Multilevel…
Ernst P. Stephan, Thanh Tran
Hardcover
R4,624
Discovery Miles 46 240
Weighted Polynomial Approximation and…
Peter Junghanns, Giuseppe Mastroianni, …
Hardcover
R4,311
Discovery Miles 43 110
Integral Methods in Science and…
Christian Constanda, Matteo Dalla Riva, …
Hardcover
R3,450
Discovery Miles 34 500
Density Evolution Under Delayed Dynamics…
Jerome Losson, Michael C. Mackey, …
Hardcover
R2,789
Discovery Miles 27 890
Generalized Radon Transforms And Imaging…
Gaik Ambartsoumian
Hardcover
R2,249
Discovery Miles 22 490
|