Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Integral equations
This book offers a rigorous and self-contained presentation of stochastic integration and stochastic calculus within the general framework of continuous semimartingales. The main tools of stochastic calculus, including Ito's formula, the optional stopping theorem and Girsanov's theorem, are treated in detail alongside many illustrative examples. The book also contains an introduction to Markov processes, with applications to solutions of stochastic differential equations and to connections between Brownian motion and partial differential equations. The theory of local times of semimartingales is discussed in the last chapter. Since its invention by Ito, stochastic calculus has proven to be one of the most important techniques of modern probability theory, and has been used in the most recent theoretical advances as well as in applications to other fields such as mathematical finance. Brownian Motion, Martingales, and Stochastic Calculus provides a strong theoretical background to the reader interested in such developments. Beginning graduate or advanced undergraduate students will benefit from this detailed approach to an essential area of probability theory. The emphasis is on concise and efficient presentation, without any concession to mathematical rigor. The material has been taught by the author for several years in graduate courses at two of the most prestigious French universities. The fact that proofs are given with full details makes the book particularly suitable for self-study. The numerous exercises help the reader to get acquainted with the tools of stochastic calculus.
This work results from a selection of the contributions presented in the mini symposium "Applications of Multiresolution Analysis with "Wavelets", presented at the ICIAM 19, the International Congress on Industrial and Applied Mathematics held at Valencia, Spain, in July 2019. The presented developments and applications cover different areas, including filtering, signal analysis for damage detection, time series analysis, solutions to boundary value problems and fractional calculus. This bunch of examples highlights the importance of multiresolution analysis to face problems in several and varied disciplines. The book is addressed to researchers in the field.
Provides a more cohesive and sharply focused treatment of fundamental concepts and theoretical background material, with particular attention given to better delineating connections to varying applications Exposition driven by additional examples and exercises
The objective of this book is to construct a rigorous mathematical approach to linear hereditary problems of wave propagation theory and demonstrate the efficiency of mathematical theorems in hereditary mechanics. By using both real end complex Tauberian techniques for the Laplace transform, a classification of near-front asymptotics of solutions to considered equations is given-depending on the singularity character of the memory function. The book goes on to derive the description of the behavior of these solutions and demonstrates the importance of nonlinear Laplace transform in linear hereditary elasticity. This book is of undeniable value to researchers working in areas of mathematical physics and related fields.
This book is intended for university seniors and graduate students majoring in probability theory or mathematical finance. In the first chapter, results in probability theory are reviewed. Then, it follows a discussion of discrete-time martingales, continuous time square integrable martingales (particularly, continuous martingales of continuous paths), stochastic integrations with respect to continuous local martingales, and stochastic differential equations driven by Brownian motions. In the final chapter, applications to mathematical finance are given. The preliminary knowledge needed by the reader is linear algebra and measure theory. Rigorous proofs are provided for theorems, propositions, and lemmas. In this book, the definition of conditional expectations is slightly different than what is usually found in other textbooks. For the Doob-Meyer decomposition theorem, only square integrable submartingales are considered, and only elementary facts of the square integrable functions are used in the proof. In stochastic differential equations, the Euler-Maruyama approximation is used mainly to prove the uniqueness of martingale problems and the smoothness of solutions of stochastic differential equations.
This book includes four courses on geometric measure theory, the calculus of variations, partial differential equations, and differential geometry. Authored by leading experts in their fields, the lectures present different approaches to research topics with the common background of a relevant underlying, usually non-Riemannian, geometric structure. In particular, the topics covered concern differentiation and functions of bounded variation in metric spaces, Sobolev spaces, and differential geometry in the so-called Carnot-Caratheodory spaces. The text is based on lectures presented at the 10th School on "Analysis and Geometry in Metric Spaces" held in Levico Terme (TN), Italy, in collaboration with the University of Trento, Fondazione Bruno Kessler and CIME, Italy. The book is addressed to both graduate students and researchers.
The 2nd edition of this book is essentially an extended version of the 1st and provides a very sound overview of the most important special functions of Fractional Calculus. It has been updated with material from many recent papers and includes several surveys of important results known before the publication of the 1st edition, but not covered there. As a result of researchers' and scientists' increasing interest in pure as well as applied mathematics in non-conventional models, particularly those using fractional calculus, Mittag-Leffler functions have caught the interest of the scientific community. Focusing on the theory of Mittag-Leffler functions, this volume offers a self-contained, comprehensive treatment, ranging from rather elementary matters to the latest research results. In addition to the theory the authors devote some sections of the work to applications, treating various situations and processes in viscoelasticity, physics, hydrodynamics, diffusion and wave phenomena, as well as stochastics. In particular, the Mittag-Leffler functions make it possible to describe phenomena in processes that progress or decay too slowly to be represented by classical functions like the exponential function and related special functions. The book is intended for a broad audience, comprising graduate students, university instructors and scientists in the field of pure and applied mathematics, as well as researchers in applied sciences like mathematical physics, theoretical chemistry, bio-mathematics, control theory and several other related areas.
This text explains how advances in wavelet analysis provide new means for multiresolution analysis and describes its wide array of powerful tools. The book covers such topics as: the variations of the windowed Fourier transform; constructions of special waveforms suitable for specific tasks; the use of redundant representations in reconstruction and enhancement; applications of efficient numerical compression as a tool for fast numerical analysis; and approximation properties of various waveforms in different contexts.
Introduction to integration provides a unified account of integration theory, giving a practical guide to the Lebesgue integral and its uses, with a wealth of illustrative examples and exercises. The book begins with a simplified Lebesgue-style integral (in lieu of the more traditional Riemann integral), intended for a first course in integration. This suffices for elementary applications, and serves as an introduction to the core of the book. The final chapters present selected applications, mostly drawn from Fourier analysis. The emphasis throughout is on integrable functions rather than on measure. The book is designed primarily as an undergraduate or introductory graduate textbook. It is similar in style and level to Priestley's Introduction to complex analysis, for which it provides a companion volume, and is aimed at both pure and applied mathematicians. Prerequisites are the rudiments of integral calculus and a first course in real analysis.
This book is among the first concise presentations of the set-valued stochastic integration theory as well as its natural applications, as well as the first to contain complex approach theory of set-valued stochastic integrals. Taking particular consideration of set-valued Ito , set-valued stochastic Lebesgue, and stochastic Aumann integrals, the volume is divided into nine parts. It begins with preliminaries of mathematical methods that are then applied in later chapters containing the main results and some of their applications, and contains many new problems. Methods applied in the book are mainly based on functional analysis, theory of probability processes, and theory of set-valued mappings. The volume will appeal to students of mathematics, economics, and engineering, as well as to mathematics professionals interested in applications of the theory of set-valued stochastic integrals.
The classical Lojasiewicz gradient inequality (1963) was extended by Simon (1983) to the infinite-dimensional setting, now called the Lojasiewicz-Simon gradient inequality. This book presents a unified method to show asymptotic convergence of solutions to a stationary solution for abstract parabolic evolution equations of the gradient form by utilizing this Lojasiewicz-Simon gradient inequality. In order to apply the abstract results to a wider class of concrete nonlinear parabolic equations, the usual Lojasiewicz-Simon inequality is extended, which is published here for the first time. In the second version, these abstract results are applied to reaction-diffusion equations with discontinuous coefficients, reaction-diffusion systems, and epitaxial growth equations. The results are also applied to the famous chemotaxis model, i.e., the Keller-Segel equations even for higher-dimensional ones.
This book contains contributions from the invited speakers to the fifth S.E.R.C Summer School in Numerical Analysis, which was held at Lancaster University from 19th to 31st July, 1992. The expositions were at a level which could be understood by post-graduate research students, yet would be advanced enough to stimulate established researchers. The book should therefore be useful to a wide class of readers. The topics which are covered include some of the most important areas of current research in numerical analysis. Part I deals with the use of parrallel computers, both for solving large sets of linear equations and calculating the eigensystems of large matrices. Such problems arise from the discretization of partial differential equations. Aspects of the solution of such equations are dealt with in Part II. These include the preconditioning of elliptic problems, the study of semi-conductors, and description of recent methods for the solution of hydrodynamic problems. The contributors are: Jesse L. Barlow, Pennsylvania State University; Professor Jack Dongarra, Oak Ridge National Library; Professor Howard C. Elman, Institute for Advanced Computer Studies, Maryland; Professor Randolph E. Bank, University of California; Professor J.W. Jerome, Northwestern University, and Professor Maurizio Pandolfi, Politecnico di Torino, Italy.
In this book, the optimal transportation problem (OT) is described as a variational problem for absolutely continuous stochastic processes with fixed initial and terminal distributions. Also described is Schroedinger's problem, which is originally a variational problem for one-step random walks with fixed initial and terminal distributions. The stochastic optimal transportation problem (SOT) is then introduced as a generalization of the OT, i.e., as a variational problem for semimartingales with fixed initial and terminal distributions. An interpretation of the SOT is also stated as a generalization of Schroedinger's problem. After the brief introduction above, the fundamental results on the SOT are described: duality theorem, a sufficient condition for the problem to be finite, forward-backward stochastic differential equations (SDE) for the minimizer, and so on. The recent development of the superposition principle plays a crucial role in the SOT. A systematic method is introduced to consider two problems: one with fixed initial and terminal distributions and one with fixed marginal distributions for all times. By the zero-noise limit of the SOT, the probabilistic proofs to Monge's problem with a quadratic cost and the duality theorem for the OT are described. Also described are the Lipschitz continuity and the semiconcavity of Schroedinger's problem in marginal distributions and random variables with given marginals, respectively. As well, there is an explanation of the regularity result for the solution to Schroedinger's functional equation when the space of Borel probability measures is endowed with a strong or a weak topology, and it is shown that Schroedinger's problem can be considered a class of mean field games. The construction of stochastic processes with given marginals, called the marginal problem for stochastic processes, is discussed as an application of the SOT and the OT.
This second volume continues the study on asymptotic convergence of global solutions of parabolic equations to stationary solutions by utilizing the theory of abstract parabolic evolution equations and the Lojasiewicz-Simon gradient inequality. In the first volume of the same title, after setting the abstract frameworks of arguments, a general convergence theorem was proved under the four structural assumptions of critical condition, Lyapunov function, angle condition, and gradient inequality. In this volume, with those abstract results reviewed briefly, their applications to concrete parabolic equations are described. Chapter 3 presents a discussion of semilinear parabolic equations of second order in general n-dimensional spaces, and Chapter 4 is devoted to treating epitaxial growth equations of fourth order, which incorporate general roughening functions. In Chapter 5 consideration is given to the Keller-Segel equations in one-, two-, and three-dimensional spaces. Some of these results had already been obtained and published by the author in collaboration with his colleagues. However, by means of the abstract theory described in the first volume, those results can be extended much more. Readers of this monograph should have a standard-level knowledge of functional analysis and of function spaces. Familiarity with functional analytic methods for partial differential equations is also assumed.
Complexity theory has become an increasingly important theme in mathematical research. This book deals with an approximate solution of differential or integral equations by algorithms using incomplete information. This situation often arises for equations of the form Lu = f where f is some function defined on a domain and L is a differential operator. We do not have complete information about f. For instance, we might only know its value at a finite number of points in the domain, or the values of its inner products with a finite set of known functions. Consequently the best that can be hoped for is to solve the equation to within a given accuracy at minimal cost or complexity. In this book, the theory of the complexity of the solution to differential and integral equations is developed. The relationship between the worst case setting and other (sometimes more tractable) related settings, such as the average case, probabilistic, asymptotic, and randomized settings, is also discussed. The author determines the inherent complexity of the problem and finds optimal algorithms (in the sense of having minimal cost). Furthermore, he studies to what extent standard algorithms (such as finite element methods for elliptic problems) are optimal. This approach is discussed in depth in the context of two-point boundary value problems, linear elliptic partial differential equations, integral equations, ordinary differential equations, and ill-posed problems. As a result, this volume should appeal to mathematicians and numerical analysts working on the approximate solution of differential and integral equations, as well as to complexity theorists addressing related questions in this area.
This contributed volume collects papers based on courses and talks given at the 2017 CIMPA school Harmonic Analysis, Geometric Measure Theory and Applications, which took place at the University of Buenos Aires in August 2017. These articles highlight recent breakthroughs in both harmonic analysis and geometric measure theory, particularly focusing on their impact on image and signal processing. The wide range of expertise present in these articles will help readers contextualize how these breakthroughs have been instrumental in resolving deep theoretical problems. Some topics covered include: Gabor frames Falconer distance problem Hausdorff dimension Sparse inequalities Fractional Brownian motion Fourier analysis in geometric measure theory This volume is ideal for applied and pure mathematicians interested in the areas of image and signal processing. Electrical engineers and statisticians studying these fields will also find this to be a valuable resource.
From Measures to Ito Integrals gives a clear account of measure theory, leading via L2-theory to Brownian motion, Ito integrals and a brief look at martingale calculus. Modern probability theory and the applications of stochastic processes rely heavily on an understanding of basic measure theory. This text is ideal preparation for graduate-level courses in mathematical finance and perfect for any reader seeking a basic understanding of the mathematics underpinning the various applications of Ito calculus.
The inverse scattering problem is central to many areas of science and technology such as radar, sonar, medical imaging, geophysical exploration and nondestructive testing. This book is devoted to the mathematical and numerical analysis of the inverse scattering problem for acoustic and electromagnetic waves. In this fourth edition, a number of significant additions have been made including a new chapter on transmission eigenvalues and a new section on the impedance boundary condition where particular attention has been made to the generalized impedance boundary condition and to nonlocal impedance boundary conditions. Brief discussions on the generalized linear sampling method, the method of recursive linearization, anisotropic media and the use of target signatures in inverse scattering theory have also been added.
This volume presents the proceedings of the meeting New Trends in One-Dimensional Dynamics, which celebrated the 70th birthday of Welington de Melo and was held at the IMPA, Rio de Janeiro, in November 2016. Highlighting the latest results in one-dimensional dynamics and its applications, the contributions gathered here also celebrate the highly successful meeting, which brought together experts in the field, including many of Welington de Melo's co-authors and former doctoral students. Sadly, Welington de Melo passed away shortly after the conference, so that the present volume became more a tribute to him. His role in the development of mathematics was undoubtedly an important one, especially in the area of low-level dynamics, and his legacy includes, in addition to many articles with fundamental contributions, books that are required reading for all newcomers to the field.
This book aims to establish a foundation for fractional derivatives and fractional differential equations. The theory of fractional derivatives enables considering any positive order of differentiation. The history of research in this field is very long, with its origins dating back to Leibniz. Since then, many great mathematicians, such as Abel, have made contributions that cover not only theoretical aspects but also physical applications of fractional calculus. The fractional partial differential equations govern phenomena depending both on spatial and time variables and require more subtle treatments. Moreover, fractional partial differential equations are highly demanded model equations for solving real-world problems such as the anomalous diffusion in heterogeneous media. The studies of fractional partial differential equations have continued to expand explosively. However we observe that available mathematical theory for fractional partial differential equations is not still complete. In particular, operator-theoretical approaches are indispensable for some generalized categories of solutions such as weak solutions, but feasible operator-theoretic foundations for wide applications are not available in monographs. To make this monograph more readable, we are restricting it to a few fundamental types of time-fractional partial differential equations, forgoing many other important and exciting topics such as stability for nonlinear problems. However, we believe that this book works well as an introduction to mathematical research in such vast fields.
This book presents a step-by-step guide to the basic theory of multivectors and spinors, with a focus on conveying to the reader the geometric understanding of these abstract objects. Following in the footsteps of M. Riesz and L. Ahlfors, the book also explains how Clifford algebra offers the ideal tool for studying spacetime isometries and Moebius maps in arbitrary dimensions. The book carefully develops the basic calculus of multivector fields and differential forms, and highlights novelties in the treatment of, e.g., pullbacks and Stokes's theorem as compared to standard literature. It touches on recent research areas in analysis and explains how the function spaces of multivector fields are split into complementary subspaces by the natural first-order differential operators, e.g., Hodge splittings and Hardy splittings. Much of the analysis is done on bounded domains in Euclidean space, with a focus on analysis at the boundary. The book also includes a derivation of new Dirac integral equations for solving Maxwell scattering problems, which hold promise for future numerical applications. The last section presents down-to-earth proofs of index theorems for Dirac operators on compact manifolds, one of the most celebrated achievements of 20th-century mathematics. The book is primarily intended for graduate and PhD students of mathematics. It is also recommended for more advanced undergraduate students, as well as researchers in mathematics interested in an introduction to geometric analysis.
This book presents an exhaustive study of atomicity from a mathematics perspective in the framework of multi-valued non-additive measure theory. Applications to quantum physics and, more generally, to the fractal theory of the motion, are highlighted. The study details the atomicity problem through key concepts, such as the atom/pseudoatom, atomic/nonatomic measures, and different types of non-additive set-valued multifunctions. Additionally, applications of these concepts are brought to light in the study of the dynamics of complex systems. The first chapter prepares the basics for the next chapters. In the last chapter, applications of atomicity in quantum physics are developed and new concepts, such as the fractal atom are introduced. The mathematical perspective is presented first and the discussion moves on to connect measure theory and quantum physics through quantum measure theory. New avenues of research, such as fractal/multifractal measure theory with potential applications in life sciences, are opened.
This book is the second edition, whose original mission was to offer a new approach for students wishing to better understand the mathematical tenets that underlie the study of physics. This mission is retained in this book. The structure of the book is one that keeps pedagogical principles in mind at every level. Not only are the chapters sequenced in such a way as to guide the reader down a clear path that stretches throughout the book, but all individual sections and subsections are also laid out so that the material they address becomes progressively more complex along with the reader's ability to comprehend it. This book not only improves upon the first in many details, but it also fills in some gaps that were left open by this and other books on similar topics. The 350 problems presented here are accompanied by answers which now include a greater amount of detail and additional guidance for arriving at the solutions. In this way, the mathematical underpinnings of the relevant physics topics are made as easy to absorb as possible.
This book contains a brief historical introduction and state of the art in fractional calculus. The author introduces some of the so-called special functions, in particular, those which will be directly involved in calculations. The concepts of fractional integral and fractional derivative are also presented. Each chapter, except for the first one, contains a list of exercises containing suggestions for solving them and at last the resolution itself. At the end of those chapters there is a list of complementary exercises. The last chapter presents several applications of fractional calculus.
This contributed volume contains a collection of articles on state-of-the-art developments on the construction of theoretical integral techniques and their application to specific problems in science and engineering. The chapters in this book are based on talks given at the Fifteenth International Conference on Integral Methods in Science and Engineering, held July 16-20, 2018 at the University of Brighton, UK, and are written by internationally recognized researchers. The topics addressed are wide ranging, and include: Asymptotic analysis Boundary-domain integral equations Viscoplastic fluid flow Stationary waves Interior Neumann shape optimization Self-configuring neural networks This collection will be of interest to researchers in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students in these disciplines and other professionals for whom integration is an essential tool. |
You may like...
Non-commutative Multiple-Valued Logic…
Lavinia Corina Ciungu
Hardcover
Operator Theory and Harmonic Analysis…
Alexey N. Karapetyants, Vladislav V. Kravchenko, …
Hardcover
R6,266
Discovery Miles 62 660
Groupoid Metrization Theory - With…
Dorina Mitrea, Irina Mitrea, …
Hardcover
R2,876
Discovery Miles 28 760
Schwarz Methods and Multilevel…
Ernst P. Stephan, Thanh Tran
Hardcover
R4,624
Discovery Miles 46 240
The Rademacher System in Function Spaces
Sergey V. Astashkin
Hardcover
R3,980
Discovery Miles 39 800
Positivity and its Applications…
Eder Kikianty, Mokhwetha Mabula, …
Hardcover
R5,233
Discovery Miles 52 330
One-dimensional Linear Singular Integral…
Israel Gohberg, Naum IA. Krupnick, …
Hardcover
R2,396
Discovery Miles 23 960
Integral Methods in Science and…
Christian Constanda, Matteo Dalla Riva, …
Hardcover
R3,450
Discovery Miles 34 500
|