![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Integral equations
Written by one of the subject's foremost experts, this is the first book on division space integration theory. It is intended to present a unified account of many classes of integrals including the Lebesgue-Bochner, Denjoy-Perron gauge, Denjoy-Hincin, Cesaro-Perron, and Marcinkiewicz-Zygmund integrals. Professor Henstock develops here the general axiomatic theory of Riemann-type integration from first principles in such a way that familiar classes of integrals (such as Lebesgue and Wiener integrals) are subsumed into the general theory in a systematic fashion. In particular, the theory seeks to place Feynman integration on a secure analytical footing. By adopting an axiomatic approach, proofs are, in general, simpler and more transparent than have previously appeared. The author also shows how one proof can prove corresponding results for a wide variety of integrals. As a result, this book will be the central reference work in this subject for many years to come.
Calculus for Engineering Students: Fundamentals, Real Problems, and Computers insists that mathematics cannot be separated from chemistry, mechanics, electricity, electronics, automation, and other disciplines. It emphasizes interdisciplinary problems as a way to show the importance of calculus in engineering tasks and problems. While concentrating on actual problems instead of theory, the book uses Computer Algebra Systems (CAS) to help students incorporate lessons into their own studies. Assuming a working familiarity with calculus concepts, the book provides a hands-on opportunity for students to increase their calculus and mathematics skills while also learning about engineering applications.
Addresses computational methods that have proven efficient for the solution of a large variety of nonlinear elliptic problems. These methods can be applied to many problems in science and engineering, but this book focuses on their application to problems in continuum mechanics and physics. This book differs from others on the topic by:* Presenting examples of the power and versatility of operator-splitting methods.* Providing a detailed introduction to alternating direction methods of multipliers and their applicability to the solution of nonlinear (possibly non-smooth) problems from science and engineering.* Showing that nonlinear least-squares methods, combined with operator-splitting and conjugate gradient algorithms, provide efficient tools for the solution of highly nonlinear problems.
A generalized Radon transform (GRT) maps a function to its weighted integrals along a family of curves or surfaces. Such operators appear in mathematical models of various imaging modalities. The GRTs integrating along smooth curves and surfaces (lines, planes, circles, spheres, amongst others) have been studied at great lengths for decades, but relatively little attention has been paid to transforms integrating along non-smooth trajectories. Recently, an interesting new class of GRTs emerged at the forefront of research in integral geometry. The two common features of these transforms are the presence of a 'vertex' in their paths of integration (broken rays, cones, and stars) and their relation to imaging techniques based on physics of scattered particles (Compton camera imaging, single scattering tomography, etc).This book covers the relevant imaging modalities, their mathematical models, and the related GRTs. The discussion of the latter comprises a thorough exploration of their known mathematical properties, including injectivity, inversion, range description and microlocal analysis. The mathematical background required for reading most of the book is at the level of an advanced undergraduate student, which should make its content attractive for a large audience of specialists interested in imaging. Mathematicians may appreciate certain parts of the theory that are particularly elegant with connections to functional analysis, PDEs and algebraic geometry.
Geometric Measure Theory: A Beginner's Guide, Fifth Edition provides the framework readers need to understand the structure of a crystal, a soap bubble cluster, or a universe. The book is essential to any student who wants to learn geometric measure theory, and will appeal to researchers and mathematicians working in the field. Brevity, clarity, and scope make this classic book an excellent introduction to more complex ideas from geometric measure theory and the calculus of variations for beginning graduate students and researchers. Morgan emphasizes geometry over proofs and technicalities, providing a fast and efficient insight into many aspects of the subject, with new coverage to this edition including topical coverage of the Log Convex Density Conjecture, a major new theorem at the center of an area of mathematics that has exploded since its appearance in Perelman's proof of the Poincare conjecture, and new topical coverage of manifolds taking into account all recent research advances in theory and applications.
Derivative with a New Parameter: Theory, Methods and Applications discusses the first application of the local derivative that was done by Newton for general physics, and later for other areas of the sciences. The book starts off by giving a history of derivatives, from Newton to Caputo. It then goes on to introduce the new parameters for the local derivative, including its definition and properties. Additional topics define beta-Laplace transforms, beta-Sumudu transforms, and beta-Fourier transforms, including their properties, and then go on to describe the method for partial differential with the beta derivatives. Subsequent sections give examples on how local derivatives with a new parameter can be used to model different applications, such as groundwater flow and different diseases. The book gives an introduction to the newly-established local derivative with new parameters, along with their integral transforms and applications, also including great examples on how it can be used in epidemiology and groundwater studies.
Local Fractional Integral Transforms and Their Applications provides information on how local fractional calculus has been successfully applied to describe the numerous widespread real-world phenomena in the fields of physical sciences and engineering sciences that involve non-differentiable behaviors. The methods of integral transforms via local fractional calculus have been used to solve various local fractional ordinary and local fractional partial differential equations and also to figure out the presence of the fractal phenomenon. The book presents the basics of the local fractional derivative operators and investigates some new results in the area of local integral transforms.
Most mathematicians, engineers, and many other scientists are well-acquainted with theory and application of ordinary differential equations. This book seeks to present Volterra integral and functional differential equations in that same framwork, allowing the readers to parlay their knowledge of ordinary differential equations into theory and application of the more general problems. Thus, the presentation starts slowly with very familiar concepts and shows how these are generalized in a natural way to problems involving a memory. Liapunov's direct method is gently introduced and applied to many particular examples in ordinary differential equations, Volterra integro-differential equations, and functional differential equations.
Heun's equation is a second-order differential equation which crops up in a variety of forms in a wide range of problems in applied mathematics. These include integral equations of potential theory, wave propogation, electrostatic oscillation, and Schrodinger's equation. This volume brings together important research work for the first time, providing an important resource for all those interested in this mathematical topic. Both the current theory and the main areas of application are surveyed, and includes contributions from authoritative researchers such as Felix Arscott (Canada), P. Maroni (France), and Gerhard Wolf (Germany).
The book is devoted to dynamic inequalities of Hardy type and extensions and generalizations via convexity on a time scale T. In particular, the book contains the time scale versions of classical Hardy type inequalities, Hardy and Littlewood type inequalities, Hardy-Knopp type inequalities via convexity, Copson type inequalities, Copson-Beesack type inequalities, Liendeler type inequalities, Levinson type inequalities and Pachpatte type inequalities, Bennett type inequalities, Chan type inequalities, and Hardy type inequalities with two different weight functions. These dynamic inequalities contain the classical continuous and discrete inequalities as special cases when T = R and T = N and can be extended to different types of inequalities on different time scales such as T = hN, h > 0, T = qN for q > 1, etc.In this book the authors followed the history and development of these inequalities. Each section in self-contained and one can see the relationship between the time scale versions of the inequalities and the classical ones. To the best of the authors' knowledge this is the first book devoted to Hardy-typeinequalities and their extensions on time scales.
This contributed volume contains a collection of articles on the most recent advances in integral methods. The second of two volumes, this work focuses on the applications of integral methods to specific problems in science and engineering. Written by internationally recognized researchers, the chapters in this book are based on talks given at the Fourteenth International Conference on Integral Methods in Science and Engineering, held July 25-29, 2016, in Padova, Italy. A broad range of topics is addressed, such as:* Boundary elements* Transport problems* Option pricing* Gas reservoirs* Electromagnetic scattering This collection will be of interest to researchers in applied mathematics, physics, and mechanical and petroleum engineering, as well as graduate students in these disciplines, and to other professionals who use integration as an essential tool in their work.
This contributed volume contains a collection of articles on the most recent advances in integral methods. The first of two volumes, this work focuses on the construction of theoretical integral methods. Written by internationally recognized researchers, the chapters in this book are based on talks given at the Fourteenth International Conference on Integral Methods in Science and Engineering, held July 25-29, 2016, in Padova, Italy. A broad range of topics is addressed, such as:* Integral equations* Homogenization* Duality methods* Optimal design* Conformal techniques This collection will be of interest to researchers in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students in these disciplines, and to other professionals who use integration as an essential tool in their work.
6 Preliminaries.- 6.1 The operator of singular integration.- 6.2 The space Lp(?, ?).- 6.3 Singular integral operators.- 6.4 The spaces $$L_{p}^{ + }(\Gamma, \rho ), L_{p}^{ - }(\Gamma, \rho ) and \mathop{{L_{p}^{ - }}}\limits^{^\circ } (\Gamma, \rho )$$.- 6.5 Factorization.- 6.6 One-sided invertibility of singular integral operators.- 6.7 Fredholm operators.- 6.8 The local principle for singular integral operators.- 6.9 The interpolation theorem.- 7 General theorems.- 7.1 Change of the curve.- 7.2 The quotient norm of singular integral operators.- 7.3 The principle of separation of singularities.- 7.4 A necessary condition.- 7.5 Theorems on kernel and cokernel of singular integral operators.- 7.6 Two theorems on connections between singular integral operators.- 7.7 Index cancellation and approximative inversion of singular integral operators.- 7.8 Exercises.- Comments and references.- 8 The generalized factorization of bounded measurable functions and its applications.- 8.1 Sketch of the problem.- 8.2 Functions admitting a generalized factorization with respect to a curve in Lp(?, ?).- 8.3 Factorization in the spaces Lp(?, ?).- 8.4 Application of the factorization to the inversion of singular integral operators.- 8.5 Exercises.- Comments and references.- 9 Singular integral operators with piecewise continuous coefficients and their applications.- 9.1 Non-singular functions and their index.- 9.2 Criteria for the generalized factorizability of power functions.- 9.3 The inversion of singular integral operators on a closed curve.- 9.4 Composed curves.- 9.5 Singular integral operators with continuous coefficients on a composed curve.- 9.6 The case of the real axis.- 9.7 Another method of inversion.- 9.8 Singular integral operators with regel functions coefficients.- 9.9 Estimates for the norms of the operators P?, Q? and S?.- 9.10 Singular operators on spaces H?o(?, ?).- 9.11 Singular operators on symmetric spaces.- 9.12 Fredholm conditions in the case of arbitrary weights.- 9.13 Technical lemmas.- 9.14 Toeplitz and paired operators with piecewise continuous coefficients on the spaces lp and ?p.- 9.15 Some applications.- 9.16 Exercises.- Comments and references.- 10 Singular integral operators on non-simple curves.- 10.1 Technical lemmas.- 10.2 A preliminary theorem.- 10.3 The main theorem.- 10.4 Exercises.- Comments and references.- 11 Singular integral operators with coefficients having discontinuities of almost periodic type.- 11.1 Almost periodic functions and their factorization.- 11.2 Lemmas on functions with discontinuities of almost periodic type.- 11.3 The main theorem.- 11.4 Operators with continuous coefficients - the degenerate case.- 11.5 Exercises.- Comments and references.- 12 Singular integral operators with bounded measurable coefficients.- 12.1 Singular operators with measurable coefficients in the space L2(?).- 12.2 Necessary conditions in the space L2(?).- 12.3 Lemmas.- 12.4 Singular operators with coefficients in ?p(?). Sufficient conditions.- 12.5 The Helson-Szegoe theorem and its generalization.- 12.6 On the necessity of the condition a ? Sp.- 12.7 Extension of the class of coefficients.- 12.8 Exercises.- Comments and references.- 13 Exact constants in theorems on the boundedness of singular operators.- 13.1 Norm and quotient norm of the operator of singular integration.- 13.2 A second proof of Theorem 4.1 of Chapter 12.- 13.3 Norm and quotient norm of the operator S? on weighted spaces.- 13.4 Conditions for Fredholmness in spaces Lp(?, ?).- 13.5 Norms and quotient norm of the operator aI + bS?.- 13.6 Exercises.- Comments and references.- References.
1 Introductory Material.- 2 The Direct and Indirect B.I.E.M. for Bilateral Problems.- 3 Boundary Integral Formulations for Some Special Elastostatic B.V.Ps.- 4 On the Numerical Implementation of Boundary Element Equations.- 5 Extension to Dynamic Problems.- 6 Dynamic Interaction Problems.- 7 B.I. Formulations for the Signorini-Fichera Inequality Problem.- 8 Mathematical Study of the B.I. Formulations of the Signorini-Fichera B.V.P..- 9 Boundary Integral Formulation of the Frictional Unilateral Contact B.V.P..- 10 Boundary Integral Formulations for the Monotone Multivalued Boundary Conditions.- 11 Elastodynamic Unilateral Problems. A B.I.E. Approach.- 12 Nonconvex Unilateral Contact Problems.- 13 Miscellanea.- References.
This monograph presents a broad treatment of developments in an area of constructive approximation involving the so-called "max-product" type operators. The exposition highlights the max-product operators as those which allow one to obtain, in many cases, more valuable estimates than those obtained by classical approaches. The text considers a wide variety of operators which are studied for a number of interesting problems such as quantitative estimates, convergence, saturation results, localization, to name several. Additionally, the book discusses the perfect analogies between the probabilistic approaches of the classical Bernstein type operators and of the classical convolution operators (non-periodic and periodic cases), and the possibilistic approaches of the max-product variants of these operators. These approaches allow for two natural interpretations of the max-product Bernstein type operators and convolution type operators: firstly, as possibilistic expectations of some fuzzy variables, and secondly, as bases for the Feller type scheme in terms of the possibilistic integral. These approaches also offer new proofs for the uniform convergence based on a Chebyshev type inequality in the theory of possibility. Researchers in the fields of approximation of functions, signal theory, approximation of fuzzy numbers, image processing, and numerical analysis will find this book most beneficial. This book is also a good reference for graduates and postgraduates taking courses in approximation theory.
Thurston maps are topological generalizations of postcritically-finite rational maps. This book provides a comprehensive study of ergodic theory of expanding Thurston maps, focusing on the measure of maximal entropy, as well as a more general class of invariant measures, called equilibrium states, and certain weak expansion properties of such maps. In particular, we present equidistribution results for iterated preimages and periodic points with respect to the unique measure of maximal entropy by investigating the number and locations of fixed points. We then use the thermodynamical formalism to establish the existence, uniqueness, and various other properties of the equilibrium state for a Holder continuous potential on the sphere equipped with a visual metric. After studying some weak expansion properties of such maps, we obtain certain large deviation principles for iterated preimages and periodic points under an additional assumption on the critical orbits of the maps. This enables us to obtain general equidistribution results for such points with respect to the equilibrium states under the same assumption.
This book focuses on solving integral equations with difference kernels on finite intervals. The corresponding problem on the semiaxis was previously solved by N. Wiener-E. Hopf and by M.G. Krein. The problem on finite intervals, though significantly more difficult, may be solved using our method of operator identities. This method is also actively employed in inverse spectral problems, operator factorization and nonlinear integral equations. Applications of the obtained results to optimal synthesis, light scattering, diffraction, and hydrodynamics problems are discussed in this book, which also describes how the theory of operators with difference kernels is applied to stable processes and used to solve the famous M. Kac problems on stable processes. In this second edition these results are extensively generalized and include the case of all Levy processes. We present the convolution expression for the well-known Ito formula of the generator operator, a convolution expression that has proven to be fruitful. Furthermore we have added a new chapter on triangular representation, which is closely connected with previous results and includes a new important class of operators with non-trivial invariant subspaces. Numerous formulations and proofs have now been improved, and the bibliography has been updated to reflect more recent additions to the body of literature.
The topics in this research monograph are at the interface of several areas of mathematics such as harmonic analysis, functional analysis, analysis on spaces of homogeneous type, topology, and quasi-metric geometry. The presentation is self-contained with complete, detailed proofs, and a large number of examples and counterexamples are provided. Unique features of "Metrization Theory for Groupoids: With Applications to Analysis on Quasi-Metric Spaces and Functional Analysis" include: * treatment of metrization from a wide, interdisciplinary perspective, with accompanying applications ranging across diverse fields; * coverage of topics applicable to a variety of scientific areas within pure mathematics; * useful techniques and extensive reference material; * includes sharp results in the field of metrization. Professional mathematicians with a wide spectrum of mathematical interests will find this book to be a useful resource and complete self-study guide. At the same time, the monograph is accessible and will be of use to advanced graduate students and to scientifically trained readers with an interest in the interplay among topology and metric properties and/or functional analysis and metric properties. * coverage of topics applicable to a variety of scientific areas within pure mathematics; * useful techniques and extensive reference material; * includes sharp results in the field of metrization. Professional mathematicians with a wide spectrum of mathematical interests will find this book to be a useful resource and complete self-study guide. At the same time, the monograph is accessible and will be of use to advanced graduate students and to scientifically trained readers with an interest in the interplay among topology and metric properties and/or functional analysis and metric properties. * useful techniques and extensive reference material; * includes sharp results in the field of metrization. Professional mathematicians with a wide spectrum of mathematical interests will find this book to be a useful resource and complete self-study guide. At the same time, the monograph is accessible and will be of use to advanced graduate students and to scientifically trained readers with an interest in the interplay among topology and metric properties and/or functional analysis and metric properties. * includes sharp results in the field of metrization. Professional mathematicians with a wide spectrum of mathematical interests will find this book to be a useful resource and complete self-study guide. At the same time, the monograph is accessible and will be of use to advanced graduate students and to scientifically trained readers with an interest in the interplay among topology and metric properties and/or functional analysis and metric properties. Professional mathematicians with a wide spectrum of mathematical interests will find this book to be a useful resource and complete self-study guide. At the same time, the monograph is accessible and will be of use to advanced graduate students and to scientifically trained readers with an interest in the interplay among topology and metric properties and/or functional analysis and metric properties.
This monograph provides a self-contained and easy-to-read
introduction to non-commutative multiple-valued logic algebras; a
subject which has attracted much interest in the past few years
because of its impact on information science, artificial
intelligence and other subjects.
The book "Single variable Differential and Integral Calculus" is an interesting text book for students of mathematics and physics programs, and a reference book for graduate students in any engineering field. This book is unique in the field of mathematical analysis in content and in style. It aims to define, compare and discuss topics in single variable differential and integral calculus, as well as giving application examples in important business fields. Some elementary concepts such as the power of a set, cardinality, measure theory, measurable functions are introduced. It also covers real and complex numbers, vector spaces, topological properties of sets, series and sequences of functions (including complex-valued functions and functions of a complex variable), polynomials and interpolation and extrema of functions. Although analysis is based on the single variable models and applications, theorems and examples are all set to be converted to multi variable extensions. For example, Newton, Riemann, Stieltjes and Lebesque integrals are studied together and compared.
Exactly 100 years ago, in 1895, G. de Vries, under the supervision of D.J. Korteweg, defended his thesis on what is now known as the Korteweg-de Vries Equation. They published a joint paper in 1895 in the "Philosophical Magazine", entitled "On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary wave". In the 1960s research on this and related equations exploded. There are now some 3100 papers in mathematics and physics that contain a mention of the phrase "Korteweg-de Vries equation" in their title or abstract, and there are thousands more in other areas, such as biology, chemistry, electronics, geology, oceanology, meteorology, and so forth. And, of course, the KdV equation is only one of what are now called (Liouville) completely integrable systems. The KdV and its relatives continually turn up in situations when one wishes to incorporate nonlinear and dispersive effects into wave-type phenomena.
This is the revised and enlarged 2nd edition of the authors' original text, which was intended to be a modest complement to Grenander's fundamental memoir on stochastic processes and related inference theory. The present volume gives a substantial account of regression analysis, both for stochastic processes and measures, and includes recent material on Ridge regression with some unexpected applications, for example in econometrics. The first three chapters can be used for a quarter or semester graduate course on inference on stochastic processes. The remaining chapters provide more advanced material on stochastic analysis suitable for graduate seminars and discussions, leading to dissertation or research work. In general, the book will be of interest to researchers in probability theory, mathematical statistics and electrical and information theory.
This book provides a generalised approach to fractal dimension theory from the standpoint of asymmetric topology by employing the concept of a fractal structure. The fractal dimension is the main invariant of a fractal set, and provides useful information regarding the irregularities it presents when examined at a suitable level of detail. New theoretical models for calculating the fractal dimension of any subset with respect to a fractal structure are posed to generalise both the Hausdorff and box-counting dimensions. Some specific results for self-similar sets are also proved. Unlike classical fractal dimensions, these new models can be used with empirical applications of fractal dimension including non-Euclidean contexts. In addition, the book applies these fractal dimensions to explore long-memory in financial markets. In particular, novel results linking both fractal dimension and the Hurst exponent are provided. As such, the book provides a number of algorithms for properly calculating the self-similarity exponent of a wide range of processes, including (fractional) Brownian motion and Levy stable processes. The algorithms also make it possible to analyse long-memory in real stocks and international indexes. This book is addressed to those researchers interested in fractal geometry, self-similarity patterns, and computational applications involving fractal dimension and Hurst exponent.
This book presents applications of hypercomplex analysis to boundary value and initial-boundary value problems from various areas of mathematical physics. Given that quaternion and Clifford analysis offer natural and intelligent ways to enter into higher dimensions, it starts with quaternion and Clifford versions of complex function theory including series expansions with Appell polynomials, as well as Taylor and Laurent series. Several necessary function spaces are introduced, and an operator calculus based on modifications of the Dirac, Cauchy-Fueter, and Teodorescu operators and different decompositions of quaternion Hilbert spaces are proved. Finally, hypercomplex Fourier transforms are studied in detail. All this is then applied to first-order partial differential equations such as the Maxwell equations, the Carleman-Bers-Vekua system, the Schroedinger equation, and the Beltrami equation. The higher-order equations start with Riccati-type equations. Further topics include spatial fluid flow problems, image and multi-channel processing, image diffusion, linear scale invariant filtering, and others. One of the highlights is the derivation of the three-dimensional Kolosov-Mushkelishvili formulas in linear elasticity. Throughout the book the authors endeavor to present historical references and important personalities. The book is intended for a wide audience in the mathematical and engineering sciences and is accessible to readers with a basic grasp of real, complex, and functional analysis.
This book presents the proceedings of the 20th International Workshop on Hermitian Symmetric Spaces and Submanifolds, which was held at the Kyungpook National University from June 21 to 25, 2016. The Workshop was supported by the Research Institute of Real and Complex Manifolds (RIRCM) and the National Research Foundation of Korea (NRF). The Organizing Committee invited 30 active geometers of differential geometry and related fields from all around the globe to discuss new developments for research in the area. These proceedings provide a detailed overview of recent topics in the field of real and complex submanifolds. |
You may like...
Theory of Sobolev Multipliers - With…
Vladimir Maz'ya, Tatyana O. Shaposhnikova
Hardcover
R5,939
Discovery Miles 59 390
An Introduction to Homogenization
Doina Cioranescu, Patrizia Donato
Hardcover
R4,381
Discovery Miles 43 810
Almost Periodic Stochastic Processes
Paul H. Bezandry, Toka Diagana
Hardcover
R2,668
Discovery Miles 26 680
Modern Problems in Applied Analysis
Piotr Drygas, Sergei Rogosin
Hardcover
R3,320
Discovery Miles 33 200
Non-Additive Measures - Theory and…
Vicenc Torra, Yasuo Narukawa, …
Hardcover
R6,855
Discovery Miles 68 550
Sobolev Spaces, Their Generalizations…
Mikhail S. Agranovich
Hardcover
R3,453
Discovery Miles 34 530
Iterative Methods for Ill-Posed Problems…
Anatoly B. Bakushinsky, Mihail Yu Kokurin, …
Hardcover
R3,448
Discovery Miles 34 480
Integral Methods in Science and…
M. Zuhair Nashed, D. Rollins
Hardcover
R1,442
Discovery Miles 14 420
|