![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Integral equations
This volume collects contributions from the speakers at an INdAM Intensive period held at the University of Bari in 2017. The contributions cover several aspects of partial differential equations whose development in recent years has experienced major breakthroughs in terms of both theory and applications. The topics covered include nonlocal equations, elliptic equations and systems, fully nonlinear equations, nonlinear parabolic equations, overdetermined boundary value problems, maximum principles, geometric analysis, control theory, mean field games, and bio-mathematics. The authors are trailblazers in these topics and present their work in a way that is exhaustive and clearly accessible to PhD students and early career researcher. As such, the book offers an excellent introduction to a variety of fundamental topics of contemporary investigation and inspires novel and high-quality research.
With the groundwork laid in the first volume (EMS 15) of the Commutative Harmonic Analysis subseries of the Encyclopaedia, the present volume takes up four advanced topics in the subject: Littlewood-Paley theory for singular integrals, exceptional sets, multiple Fourier series and multiple Fourier integrals.
Mathematical models of deformation of elastic plates are used by applied mathematicians and engineers in connection with a wide range of practical applications, from microchip production to the construction of skyscrapers and aircraft. This book employs two important analytic techniques to solve the fundamental boundary value problems for the theory of plates with transverse shear deformation, which offers a more complete picture of the physical process of bending than Kirchhoff's classical one. The first method transfers the ellipticity of the governing system to the boundary, leading to singular integral equations on the contour of the domain. These equations, established on the basis of the properties of suitable layer potentials, are then solved in spaces of smooth (Hoelder continuous and Hoelder continuously differentiable) functions. The second technique rewrites the differential system in terms of complex variables and fully integrates it, expressing the solution as a combination of complex analytic potentials. The last chapter develops a generalized Fourier series method closely connected with the structure of the system, which can be used to compute approximate solutions. The numerical results generated as an illustration for the interior Dirichlet problem are accompanied by remarks regarding the efficiency and accuracy of the procedure. The presentation of the material is detailed and self-contained, making Mathematical Methods for Elastic Plates accessible to researchers and graduate students with a basic knowledge of advanced calculus.
This book is the first systematic presentation of the theory of dynamical systems under the influence of randomness. It includes products of random mappings as well as random and stochastic differential equations. The basic mulitplicative ergodic theorem is presented and provides a random substitute for linear algebra. On its basis random invariant manifolds are constructed, systems are simplified by smooth random coordinate transformations (random normal forms), and qualitative changes in families of random systems (random bifurcation theory) are studied. Numerous instructive examples are treated analytically or numerically. The main intention, however, is to present a reliable and rather complete source of reference which lays the foundation for future work and applications.
Many problems in mathematical physics rely heavily on the use of elliptical partial differential equations, and boundary integral methods play a significant role in solving these equations."Stationary Oscillations of Elastic Plates"" "studies the latter in the context ofstationaryvibrations of thin elastic plates. The techniquespresented herereduce the complexity of classical elasticity to a system of two independent variables, modeling problemsof flexural-vibrational elastic body deformation with the aid of eigenfrequencies and simplifying them to manageable, uniquely solvable integral equations. The book isintended foran audiencewith a knowledge of advanced calculus and some familiarity with functional analysis. It is a valuable resource for professionals in pure and applied mathematics, and for theoretical physicists and mechanical engineerswhose work involveselastic plates. Graduate students in these fieldscan also benefit from the monograph as a supplementary text for courses relating to theories of elasticity or flexural vibrations."
Interpolation of functions is one of the basic part of Approximation Theory. There are many books on approximation theory, including interpolation methods that - peared in the last fty years, but a few of them are devoted only to interpolation processes. An example is the book of J. Szabados and P. Vertesi: Interpolation of Functions, published in 1990 by World Scienti c. Also, two books deal with a special interpolation problem, the so-called Birkhoff interpolation, written by G.G. Lorentz, K. Jetter, S.D. Riemenschneider (1983) and Y.G. Shi (2003). The classical books on interpolation address numerous negative results, i.e., - sultsondivergentinterpolationprocesses, usuallyconstructedoversomeequidistant system of nodes. The present book deals mainly with new results on convergent - terpolation processes in uniform norm, for algebraic and trigonometric polynomials, not yet published in other textbooks and monographs on approximation theory and numerical mathematics. Basic tools in this eld (orthogonal polynomials, moduli of smoothness, K-functionals, etc.), as well as some selected applications in numerical integration, integral equations, moment-preserving approximation and summation of slowly convergent series are also given. The rstchapterprovidesanaccountofbasicfactsonapproximationbyalgebraic and trigonometric polynomials introducing the most important concepts on appro- mation of functions. Especially, in Sect. 1.4 we give basic results on interpolation by algebraic polynomials, including representations and computation of interpolation polynomials, Lagrange operators, interpolation errors and uniform convergence in some important classes of functions, as well as an account on the Lebesgue function and some estimates for the Lebesgue constant.
An introduction to nonstandard analysis based on a course given by the author. It is suitable for beginning graduates or upper undergraduates, or for self-study by anyone familiar with elementary real analysis. It presents nonstandard analysis not just as a theory about infinitely small and large numbers, but as a radically different way of viewing many standard mathematical concepts and constructions. It is a source of new ideas, objects and proofs, and a wealth of powerful new principles of reasoning. The book begins with the ultrapower construction of hyperreal number systems, and proceeds to develop one-variable calculus, analysis and topology from the nonstandard perspective. It then sets out the theory of enlargements of fragments of the mathematical universe, providing a foundation for the full-scale development of the nonstandard methodology. The final chapters apply this to a number of topics, including Loeb measure theory and its relation to Lebesgue measure on the real line. Highlights include an early introduction of the ideas of internal, external and hyperfinite sets, and a more axiomatic set-theoretic approach to enlargements than is usual.
The book collects many techniques that are helpul in obtaining regularity results for solutions of nonlinear systems of partial differential equations. They are then applied in various cases to provide useful examples and relevant results, particularly in fields like fluid mechanics, solid mechanics, semiconductor theory, or game theory.In general, these techniques are scattered in the journal literature and developed in the strict context of a given model. In the book, they are presented independently of specific models, so that the main ideas are explained, while remaining applicable to various situations. Such a presentation will facilitate application and implementation by researchers, as well as teaching to students.
Topics in Fractional Differential Equationsis devoted to the existence and uniqueness of solutions for various classes of Darboux problems for hyperbolic differential equations or inclusions involving the Caputo fractional derivative. Fractional calculus generalizes the integrals and derivatives to non-integer orders. During the last decade, fractional calculus was found to play a fundamental role in the modeling of a considerable number of phenomena; in particular the modeling of memory-dependent and complex media such as porous media. It has emerged as an important tool for the study of dynamical systems where classical methods reveal strong limitations. Some equations present delays which may be finite, infinite, or state-dependent. Others are subject to an impulsive effect. The above problems are studied using the fixed point approach, the method of upper and lower solution, and the Kuratowski measure of noncompactness. This book is addressed to a wide audience of specialists such as mathematicians, engineers, biologists, and physicists. "
The volume contains carefully selected papers presented at the International Conference on Differential & Difference Equations and Applications held in Ponta Delgada - Azores, from July 4-8, 2011 in honor of Professor Ravi P. Agarwal. The objective of the gathering was to bring together researchers in the fields of differential & difference equations and to promote the exchange of ideas and research. The papers cover all areas of differential and difference equations with a special emphasis on applications.
This self-contained title demonstrates an important interplay between abstract and concrete operator theory. Key ideas are developed in a step-by-step approach, beginning with required background and historical material, and culminating in the final chapters with state-of-the-art topics. Good examples, bibliography and index make this text a valuable classroom or reference resource.
This self-contained book is devoted to the study of the acoustic wave equations and the Maxwell system, the two most common waves equations that are encountered in physics or in engineering. It presents a detailed analysis of their mathematical and physical properties. In particular, the author focuses on the study of the harmonic exterior problems, building a mathematical framework which provides the existence and uniqueness of the solutions. This book will serve as a useful introduction to wave problems for graduate students in mathematics, physics, and engineering.
problem (0. 2) was the same u that of problem (0. 1). Incidentally, later on Mandzhavidze and Khvedclidze (I) and Simonenko (I) achieved a direct reduction of problem (0. 2) to problem (0. 1) with the help of conformal mappings. Apparenlly, the first paper in which SIES were considered was the paper by Vekua (2) published in 1948. Vekua verified that the equation (0. 3) where (1; C(f), 5 is the operator of 'ingular integration with a Cauchy kernel (Srp)(!) " (". i)-I fr(T - t)-lrp(T)dT, W is the shift operator (WrpHt) = rp{a(t", in the case 01 = - (13,0, = 0. , could be reduced to problem (0. 2). We note thai, in problem (0. 2), the shift ott) need not be a Carlemao shift, . ei. , it is oot necessary that a . . (t) :::: t for some integer 11 ~ 2, where ai(l) " o(ok_dt)), 0(1(1) ::::!. For the first time, the condition 0,(1) == 1 appeared in BPAFS theory in connection with the study of the problem (0. 4) by Carle man (2) who, in particular, showed that problem (0. 4) Wall a natural generalization of the problem on the existence of an a. utomorphic function belonging to a certain group of Fucs. Thus, the paper by Vckua (2) is also the fint paper in which a singular integral equation with a non*Carieman 5hifl is on c sidered.
Starting with a simple formulation accessible to all mathematicians, this second edition is designed to provide a thorough introduction to nonstandard analysis. Nonstandard analysis is now a well-developed, powerful instrument for solving open problems in almost all disciplines of mathematics; it is often used as a 'secret weapon' by those who know the technique. This book illuminates the subject with some of the most striking applications in analysis, topology, functional analysis, probability and stochastic analysis, as well as applications in economics and combinatorial number theory. The first chapter is designed to facilitate the beginner in learning this technique by starting with calculus and basic real analysis. The second chapter provides the reader with the most important tools of nonstandard analysis: the transfer principle, Keisler's internal definition principle, the spill-over principle, and saturation. The remaining chapters of the book study different fields for applications; each begins with a gentle introduction before then exploring solutions to open problems. All chapters within this second edition have been reworked and updated, with several completely new chapters on compactifications and number theory. Nonstandard Analysis for the Working Mathematician will be accessible to both experts and non-experts, and will ultimately provide many new and helpful insights into the enterprise of mathematics.
This book offers a comprehensive treatment of the theory of measures of noncompactness. It discusses various applications of the theory of measures of noncompactness, in particular, by addressing the results and methods of fixed-point theory. The concept of a measure of noncompactness is very useful for the mathematical community working in nonlinear analysis. Both these theories are especially useful in investigations connected with differential equations, integral equations, functional integral equations and optimization theory. Thus, one of the book's central goals is to collect and present sufficient conditions for the solvability of such equations. The results are established in miscellaneous function spaces, and particular attention is paid to fractional calculus.
The symposium was organized with the intention of creating an opportunity for mathematicians and engineers working on nonlinear problems to communicate with each other and exchange experiences in the use of boundary integral methods. The spirit of the symposium is clearly reflected in the papers collected in the volume. Some mathematical issues of boundary integral methods for the solution of nonlinear problems are examined in depth. In addition, several applications to fluid and solid mechanics and heat transfer problems are presented. The reader is given a wide overview of the broad class of applications where boundary integral methods represent a very appealing tool for the analysis of nonlinear problems.
This book presents contributions and review articles on the theory of copulas and their applications. The authoritative and refereed contributions review the latest findings in the area with emphasis on "classical" topics like distributions with fixed marginals, measures of association, construction of copulas with given additional information, etc. The book celebrates the 75th birthday of Professor Roger B. Nelsen and his outstanding contribution to the development of copula theory. Most of the book's contributions were presented at the conference "Copulas and Their Applications" held in his honor in Almeria, Spain, July 3-5, 2017. The chapter 'When Gumbel met Galambos' is published open access under a CC BY 4.0 license.
This book provides an account for the non-specialist of the circle of ideas, results and techniques, which grew out in the study of Brownian motion and random obstacles. It also includes an overview of known results and connections with other areas of random media, taking a highly original and personal approach throughout.
The first formulations of linear boundary value problems for analytic functions were due to Riemann (1857). In particular, such problems exhibit as boundary conditions relations among values of the unknown analytic functions which have to be evaluated at different points of the boundary. Singular integral equations with a shift are connected with such boundary value problems in a natural way. Subsequent to Riemann's work, D. Hilbert (1905), C. Haseman (1907) and T. Carleman (1932) also considered problems of this type. About 50 years ago, Soviet mathematicians began a systematic study of these topics. The first works were carried out in Tbilisi by D. Kveselava (1946-1948). Afterwards, this theory developed further in Tbilisi as well as in other Soviet scientific centers (Rostov on Don, Ka zan, Minsk, Odessa, Kishinev, Dushanbe, Novosibirsk, Baku and others). Beginning in the 1960s, some works on this subject appeared systematically in other countries, e. g., China, Poland, Germany, Vietnam and Korea. In the last decade the geography of investigations on singular integral operators with shift expanded significantly to include such countries as the USA, Portugal and Mexico. It is no longer easy to enumerate the names of the all mathematicians who made contributions to this theory. Beginning in 1957, the author also took part in these developments. Up to the present, more than 600 publications on these topics have appeared."
This book features original research and survey articles on the topics of function spaces and inequalities. It focuses on (variable/grand/small) Lebesgue spaces, Orlicz spaces, Lorentz spaces, and Morrey spaces and deals with mapping properties of operators, (weighted) inequalities, pointwise multipliers and interpolation. Moreover, it considers Sobolev-Besov and Triebel-Lizorkin type smoothness spaces. The book includes papers by leading international researchers, presented at the International Conference on Function Spaces and Inequalities, held at the South Asian University, New Delhi, India, on 11-15 December 2015, which focused on recent developments in the theory of spaces with variable exponents. It also offers further investigations concerning Sobolev-type embeddings, discrete inequalities and harmonic analysis. Each chapter is dedicated to a specific topic and written by leading experts, providing an overview of the subject and stimulating future research.
In 1979, I edited Volume 18 in this series: Solution Methods for Integral Equations: Theory and Applications. Since that time, there has been an explosive growth in all aspects of the numerical solution of integral equations. By my estimate over 2000 papers on this subject have been published in the last decade, and more than 60 books on theory and applications have appeared. In particular, as can be seen in many of the chapters in this book, integral equation techniques are playing an increas ingly important role in the solution of many scientific and engineering problems. For instance, the boundary element method discussed by Atkinson in Chapter 1 is becoming an equal partner with finite element and finite difference techniques for solving many types of partial differential equations. Obviously, in one volume it would be impossible to present a complete picture of what has taken place in this area during the past ten years. Consequently, we have chosen a number of subjects in which significant advances have been made that we feel have not been covered in depth in other books. For instance, ten years ago the theory of the numerical solution of Cauchy singular equations was in its infancy. Today, as shown by Golberg and Elliott in Chapters 5 and 6, the theory of polynomial approximations is essentially complete, although many details of practical implementation remain to be worked out."
Methods in Nonlinear Integral Equations presents several extremely
fruitful methods for the analysis of systems and nonlinear integral
equations. They include: fixed point methods (the Schauder and
Leray-Schauder principles), variational methods (direct variational
methods and mountain pass theorems), and iterative methods (the
discrete continuation principle, upper and lower solutions
techniques, Newton's method and the generalized quasilinearization
method). Many important applications for several classes of
integral equations and, in particular, for initial and boundary
value problems, are presented to complement the theory. Special
attention is paid to the existence and localization of solutions in
bounded domains such as balls and order intervals. The presentation
is essentially self-contained and leads the reader from classical
concepts to current ideas and methods of nonlinear analysis.
This book contains detailed lecture notes on six topics at the forefront of current research in numerical analysis and applied mathematics. Each set of notes presents a self-contained guide to a current research area and has an extensive bibliography. In addition, most of the notes contain detailed proofs of the key results. The notes start from a level suitable for first year graduate students in applied mathematics, mathematical analysis or numerical analysis, and proceed to current research topics. The reader should therefore be able to gain quickly an insight into the important results and techniques in each area without recourse to the large research literature. Current (unsolved) problems are also described and directions for future research are given. This book is also suitable for professional mathematicians who require a succinct and accurate account of recent research in areas parallel to their own, and graduates in mathematical sciences.
This book presents most of the techniques used in the microlocal treatment of semiclassical problems coming from quantum physics. Both the standard C8 pseudodifferential calculus and the analytic microlocal analysis is developed, in a context which remains intentionally global so that only the relevant difficulties of the theory are encountered. The originality lies in the fact that the main features of analytic microlocal analysis are derived from a single and elementary a priori estimate. Various exercises illustrate the chief results of each chapter while introducing the reader to further developments of the theory. This book is aimed at non-specialists of the subject and the only required prerequisite is a basic knowledge of the theory of distributions.
Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern as well as the clas sical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics (TAM). The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Mathe matical Sciences ( AMS) series, which will focus on advanced textbooks and research level monographs. Foreword This book is based on a one-semester course for graduate students in the physical sciences and applied mathematics. No great mathematical back ground is needed, but the student should be familiar with the theory of analytic functions of a complex variable. Since the course is on problem solving rather than theorem-proving, the main requirement is that the stu dent should be willing to work out a large number of specific examples." |
You may like...
Generalized Radon Transforms And Imaging…
Gaik Ambartsoumian
Hardcover
R2,144
Discovery Miles 21 440
Calculus for Engineering Students…
Jesus Martin Vaquero, Michael Carr, …
Paperback
R2,162
Discovery Miles 21 620
Hardy Type Inequalities on Time Scales
Ravi P. Agarwal, Donal O'Regan, …
Hardcover
R3,741
Discovery Miles 37 410
Local Fractional Integral Transforms and…
Xiaojun Yang, Dumitru Baleanu, …
Hardcover
R1,806
Discovery Miles 18 060
Non-commutative Multiple-Valued Logic…
Lavinia Corina Ciungu
Hardcover
Integral Methods in Science and…
Christian Constanda, Matteo Dalla Riva, …
Hardcover
R3,471
Discovery Miles 34 710
|