![]() |
![]() |
Your cart is empty |
||
Books > Medicine > Pre-clinical medicine: basic sciences > Medical genetics
JIMD Reports publishes case and short research reports in the area of inherited metabolic disorders. Case reports highlight some unusual or previously unrecorded feature relevant to the disorder, or serve as an important reminder of clinical or biochemical features of a Mendelian disorder.
Psychiatric genetics has become 'Big Biology'. This may come as a surprising development to those familiar with its controversial history. From eugenic origins and contentious twin studies to a global network of laboratories employing high-throughput genetic and genomic technologies, biological research on psychiatric disorders has become an international, multidisciplinary assemblage of massive data resources. How did psychiatric genetics achieve this scale? How is it socially and epistemically organized? And how do scientists experience this politics of scale? Psychiatric Genetics: From Hereditary Madness to Big Biology develops a sociological approach of exploring the origins of psychiatric genetics by tracing several distinct styles of scientific reasoning that coalesced at the beginning of the twentieth century. These styles of reasoning reveal, among other things, a range of practices that maintain an extraordinary stability in the face of radical criticism, internal tensions and scientific disappointments. The book draws on a variety of methods and materials to explore these claims. Combining genealogical analysis of historical literature, rhetorical analysis of scientific review articles, interviews with scientists, ethnographic observations of laboratory practices and international conferences, this book offers a comprehensive and detailed exploration of both local and global changes in the field of psychiatric genetics.
In her study Elisabeth Salzer describes three novel monogenic diseases. For CD27 deficiency Elisabeth Salzer describes a large cohort of patients. Although all patients shared the same causative missense mutation, they displayed diverse clinical presentations. In another patient she was able to identify a mutation in PRKCD resulting in a primary immunodeficiency with severe Lupus-like autoimmunity. The patient exhibited increased mRNA levels of IL6. Therefore, treatment with Tocilizumab, a humanized anti-IL-6 receptor monoclonal antibody was suggested. In a family with a history of deaths due to inflammatory bowel disease she identified a missense mutation in IL21. She produced wild type and mutated IL-21 protein and demonstrated a loss of function phenotype. As IL-21 is in clinical trials, she proposed a potentially curative treatment option. These discoveries contributed to the understanding of the multifaceted regulatory mechanisms of the immune system and highlighted essential players in these complex signaling networks.
The adult patient diagnosed with or at risk for a neurogenetic disease has many questions and concerns for the genetic counselor, the neurologist, and other practitioners. Because of the emotional and potentially life-altering impact of these diseases on the patient and family, counseling can be especially challenging. A rare hands-on guide to the subject, Genetic Counseling for Adult Neurogenetic Disease deals with core issues that differentiate adult neurogenetic counseling from its more familiar pediatric counterpart. This innovative book with accompanying videos is designed to fill in deficits in this area typical of training programs in genetic counseling (which have pediatrics and prenatal concentrations) and neurology (which rarely cover genetic counseling). For each condition featured, chapters include a detailed overview of genetic symptoms, diagnostic criteria, and management, plus guidelines for asking, and answering, pertinent questions. The major concentration, however, is on genetic counseling issues and case histories illustrating these issues. As an added dimension, the accompanying videos depict representative issues and challenges in genetic counseling for specific diseases in addition to the basics of a neurological examination. Among the conditions discussed: Movement disorders, including Parkinson's disease. Dementias, including Alzheimer's disease. Stroke. Motor neuron diseases. Neuropathies and channelopathies. Adult muscular dystrophies. Neurocutaneous syndromes. Plus a section on neurological and neuropsychological evaluation. This is information that will stay relevant as technologies change and genetic understanding evolves. Genetic Counseling for Adult Neurogenetic Disease offers advanced clinical wisdom for genetic counselors as well as neurologists, neuropsychologists, and other referring clinicians.
JIMD Reports publishes case and short research reports in the area of inherited metabolic disorders. Case reports highlight some unusual or previously unrecorded feature relevant to the disorder, or serve as an important reminder of clinical or biochemical features of a Mendelian disorder.
This informative new book presents an accessible account of the development of medical genetics over the past 70 years, one of the most important areas of 20th, and now 21st, century science and medicine. Based largely on the author's personal involvement and career as a leader in the field over the last half century, both in the UK and internationally, it draws on his interest and involvement in documenting the history of medical genetics. Underpinning the content is a unique series of 100 recorded interviews undertaken by the author with key older workers in the field, the majority British, providing invaluable information going back to the very beginnings of human and medical genetics. Focusing principally on medically relevant areas of genetics rather than the underlying basic science and technological aspects, the book offers a fascinating insight for those working and training in the field of clinical or laboratory aspects of medical genetics, genomics and allied areas; it will also be of interest to historians of science and medicine and to workers in the social sciences who are increasingly attracted by the social and ethical challenges posed by modern medical genetics and genomics.
JIMD Reports publishes case and short research reports in the area of inherited metabolic disorders. Case reports highlight some unusual or previously unrecorded feature relevant to the disorder, or serve as an important reminder of clinical or biochemical features of a Mendelian disorder.
After sequencing the human genome a decade ago, researchers have continued their projects, but now to try to better understand how, and when, genes are expressed in health and disease. Efforts have been concentrated on the measurement of the expression of RNA transcripts. In an analogy to the genome, the term "transcriptome" was created to refer to the complete set of RNAs in a cell type or tissue in a particular situation. Transcriptomics is the science that studies this issue and it is a branch of functional genomics. Transcriptomics in Heath and Disease provides a comprehensive overview of the science of transcriptomics initially in health, focusing on the concept of the transcriptome and the main methods to evaluate it. The authors discuss the concept and use of gene expression signatures and transcriptional biomarkers in normal development and diseased tissues and organs. As the transcriptome changes depending on the pathology, there is also a focus on the variations in the gene expression in different diseases such as autoimmune, inflammation, cancer and infections. This book should be very useful for researchers in molecular biology focusing on gene expression, human genetics, immunology, and genomics.
Written for non-experts, this volume introduces the mechanisms that underlie reticulate evolution. Chapters are either accompanied with glossaries that explain new terminology or timelines that position pioneering scholars and their major discoveries in their historical contexts. The contributing authors outline the history and original context of discovery of symbiosis, symbiogenesis, lateral gene transfer, hybridization or divergence with gene flow and infectious heredity. By applying key insights from the areas of molecular (phylo)genetics, microbiology, virology, ecology, systematics, immunology, epidemiology and computational science, they demonstrate how reticulate evolution impacts successful survival, fitness and speciation. Reticulate evolution brings forth a challenge to the standard Neo-Darwinian framework, which defines life as the outcome of bifurcation and ramification patterns brought forth by the vertical mechanism of natural selection. Reticulate evolution puts forward a pattern in the tree of life that is characterized by horizontal mergings and lineage crossings induced by symbiosis, symbiogenesis, lateral gene transfer, hybridization or divergence with gene flow and infective heredity, making the “tree of life†look more like a “web of life.†On an epistemological level, the various means by which hereditary material can be transferred horizontally challenges our classic notions of units and levels of evolution, fitness, modes of transmission, linearity, communities and biological individuality. The case studies presented examine topics including the origin of the eukaryotic cell and its organelles through symbiogenesis; the origin of algae through primary and secondary symbiosis and dinoflagellates through tertiary symbiosis; the superorganism and holobiont as units of evolution; how endosymbiosis induces speciation in multicellular life forms; transferrable and non-transferrable plasmids and how they symbiotically interact with their host; the means by which pro- and eukaryotic organisms transfer genes laterally (bacterial transformation, transduction and conjugation as well as transposons and other mobile genetic elements); hybridization and divergence with gene flow in sexually-reproducing individuals; current (human) microbiome and viriome studies that impact our knowledge concerning the evolution of organismal health and acquired immunity; and how symbiosis and symbiogenesis can be modelled in computational evolution.
This is a short and self-contained introduction to the field of mathematical modeling of gene-networks in bacteria. As an entry point to the field, we focus on the analysis of simple gene-network dynamics. The notes commence with an introduction to the deterministic modeling of gene-networks, with extensive reference to applicable results coming from dynamical systems theory. The second part of the notes treats extensively several approaches to the study of gene-network dynamics in the presence of noise-either arising from low numbers of molecules involved, or due to noise external to the regulatory process. The third and final part of the notes gives a detailed treatment of three well studied and concrete examples of gene-network dynamics by considering the lactose operon, the tryptophan operon, and the lysis-lysogeny switch. The notes contain an index for easy location of particular topics as well as an extensive bibliography of the current literature. The target audience of these notes are mainly graduates students and young researchers with a solid mathematical background (calculus, ordinary differential equations, and probability theory at a minimum), as well as with basic notions of biochemistry, cell biology, and molecular biology. They are meant to serve as a readable and brief entry point into a field that is currently highly active, and will allow the reader to grasp the current state of research and so prepare them for defining and tackling new research problems.
The release of the complete version of the human genome sequence in 2003 has paved the way for defining gene function and genetic background for phenotypic variation in humans and allowed us to study the aging process in a new light. This new volume results from that research and focuses on the genetic and epigenetic process of aging. While the interpretation of the genome data is still in its initial stages, this new volume looks at the evolving understanding of molecular mechanisms involved in cellular processes, gene function associated with complex traits, epigenetic components involve in gene control and the creation of hypothesis-free genome-wide approaches. Longevity Genes: A Blueprint for Aging explores the genetic and genomic elements that can maintain a long life such as DNA damage mechanisms, epigenetics and the way we can use this knowledge to generate customized treatments. It touches on some of the multidisciplinary approaches as well as genomic-wide association technology used to analyze complex traits. This book describes the hunt for genes affecting complex traits using a high throughput technology, with adequate consideration for the selection of an appropriate population, applications of statistical genetics and computational biology, and most importantly, considering phenotype-genotype association studies. Longevity Genes provides coverage of not only established aspects of genetics and aging, but also new approaches and perceptions in this important area of research.
In the past two decades we have seen a surge forward in understanding the genetics and biochemistry underlying many pediatric orthopaedic disorders. A few projects have even progressed into the realm of clinical trials that are primarily aimed at controlling progressive disease. Meanwhile, genomic technology development has outpaced expectations and is enabling gene discovery for disorders that were previously intractable with traditional genetic methods. Included in this latter category are common disorders that display multigenic inheritance, sporadic disorders, and very rare conditions that are difficult to ascertain. Simultaneously, the study of pediatric orthopaedic disorders has been continuously refined and updated, highlighting a number of likely genetic conditions that are as yet unsolved. Molecular Genetics of Pediatric Orthopaedic Disorders updates researchers and clinicians of new developments of pediatric orthopaedic genetics. The chapters inform the audience on the revolution in new genomic methods and the impact this is having on potential study designs and the potential to discover genetic causes of many unsolved orthopaedic conditions. Recent examples have been included of pediatric orthopaedic conditions, both rare and common, that are being solved with these new methods. The book also educates pediatric orthopedic clinicians and geneticists on our understanding of the biology of "classic" genetic diseases that were derived from prior genetic studies. Chapters include biobanks and strategies for studying very rare disorders, genes and pathways causing primordial dwarfism, and notch signaling in congenital scoliosis, and more.
The book serves as a comprehensive resource for scientists and clinicians studying the role of non-coding RNAs in inflammation (viral infections, wound inflammation), human inflammatory diseases (i.e. rheumatoid arthritis, Crohn’s disease, diabetes) and innate immunity. It provides a universal reference work comprising both basic and specialized information. Given that ncRNAs represent new therapeutic targets, this volume will also be of interest to industrial biomedical researchers and those involved in drug development.
This book presents results obtained from the whole mount preparations, radiological, and histological studies of 60 pu/pu and pu/+ mice from late embryo until 3 months of age. Most mice were in the embryo to 6 week age group where vertebral developmental changes are most marked. Although vertebral abnormalities have been identified as due to mutations in the delta-like 3 (Dll3) gene, it is evident that each mouse has differing structural abnormalities. The disorder is analogous to human congenital scoliosis, a common variant of which is spondylocostal dysplasia. The histological studies presented in this book include plastic embedded sections which allow for high level resolution not only of vertebrae, intervertebral discs, and ribs but also of associated spinal cord, nerve roots and ganglia. In addition an overview of embryo and neonatal development in mouse, chick and human vertebrae is provided to better assess how and where deviant pathoanatomy occurs. The book discusses the possible variables involved in creating final deformity beyond the gene abnormality itself.
Providing a list of methods useful both to those who wish to study pseudogenes and to those who actually want to avoid their inadvertent detection, Pseudogenes: Functions and Protocols explores techniques involving pseudogenic DNA, RNA, and peptides/proteins, once believed to lack any functionality, but now known to be involved in complex regulatory circuits. After a few introductory chapters that overview the functions so far attributed to pseudogenes, this thorough volume delves into methods for pseudogene identification, for the detection of pseudogene transcription and translation, and for the study of the functions of pseudogenic RNA and proteins, as well as methods to avoid pseudogene detection when the focus of the research is their highly homologous parental counterparts. As part of the highly successful Methods in Molecular Biology series, chapters feature the kind of detailed descriptions and implementation advice that ensures successful results in the lab. Authoritative and practical, Pseudogenes: Functions and Protocols will contribute to the high interest of the scientific community toward pseudogenes, while stimulating the conception of pseudogene - centered research projects and providing experimental protocols that can facilitate their execution.
The ability of a single genome to give rise to hundreds of functionally distinct cell type programs is in itself remarkable. Pioneering studies over the past few decades have demonstrated that this plasticity is retained throughout development, a phenomenon of epigenetic programming and reprogramming that remains one of the most fascinating areas of modern biology, with major relevance to human health and disease. This book presents the basic biology involved, including key mechanistic insights into this rapidly growing field.
This volume provides the reader with a pathophysiological perspective on the role of CNS in puberty and adolescence, starting from genetic/molecular aspects, going through structural/imaging changes and leading to physical/behavioral characteristics. Therefore, renowned investigators involved in both animal and human research shared recent data as well as overall appraisal of relevant questions around CNS control of puberty and adolescence. No doubt that this volume will inspire those involved in either scientific research or clinical practice or both in the fascinating field of puberty and adolescence.
This volume presents the most recent studies on mRNA polyadenylation in plants. Chapters are divided into three sections covering recent development of the use of bioinformatics tools in the field. numerous molecular, biochemical, and methods used to characterize polyadenylation sites on a genome-wide scale. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Some are specific for plant research, but most can be adopted for research in other organisms. Authoritative and practical, Polyadenylation in Plants: Methods and Protocols provides scientists with a wide range of methods to study mRNA 3'-end formation in plants.
Breast cancer is the most common cancer in females that accounts for highest cancer specific deaths worldwide. In the last few decades research has proven that breast cancer can be treated if diagnosed at early stages and proper therapeutic strategy is adopted. Omics-based recent approaches have unveiled the molecular mechanism behind the breast tumorigenesis and aid in identification of next-generation molecular markers for early diagnosis, prognosis and even the effective targeted therapy. Significant development has taken place in the field of omics in breast cancer in the last decade. The most promising omics approaches and their outcomes in breast cancer have been presented in this book for the first time. The book covers omics technologies and budding fields such as breast cancer miRNA, lipidomics, epigenomics, proteomics, nutrigenomics, stem cell, pharmacogenomics and personalized medicine and many more along with conventional topics such as breast cancer management etc. It is a research-based reference book useful for clinician-scientists, researchers, geneticists and health care industries involved in various aspects of breast cancer. The book will also be useful for students of biomedicine, pathology and pharmacy.
This volume presents a valuable and readily reproducible collection of established and emerging techniques on modern genetic analyses. Chapters focus on statistical or data mining analyses, genetic architecture, the burden of multiple testing, genetic variance, measuring epistasis, multifactor dimensionality reduction, and ReliefF. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Epistasis: Methods and Protocols aids scientists in continuing to study elucidate epistasis in the context of modern data availability.
In a simplified form, epigenetics refers to heritable changes in phenotype that are not due to changes in the underlying DNA sequence. In this book, epigenetic mechanisms of regulation and dysregulation in health and disease are explored in great depth. Detailed chapters on epigenetic processes including DNA methylation and chromatin post-translational modifications including potential interventions with DNA methyltransferase inhibitors and histone deacetylase inhibitors are explored in initial chapters. These provide a detailed overview and important background to the entire field. The book is then focussed on epigenetic mechanisms involved in various diseases including anti-inflammatory and autoimmune conditions. Important accounts relating to the effects of epigenetics in metabolic syndrome, cardiovascular disease and asthma are the focus of subsequent chapters. The role of epigenetic dysregulation in malignancy is a current topic of interest and represents an intense field of research. A large component of this book is dedicated to the analysis of aberrant epigenetic processes in carcinogenesis and cancer progression. Further, chapters are focused on emerging cancer prevention using nutritional components and anti-cancer therapies particularly with histone deacetylase inhibitors, which have already been approved for the treatment of cutaneous T-cell lymphoma. The emerging role of nanoparticle preparations, especially in the context of delivering potential epigenetic therapies to target cells in various diseases, is also explored in this book. Overall, this book encompasses a wide range of topics related to epigenetic mechanisms in health and disease and would appeal to anyone with an interest in epigenetics, chromatin biology and emerging epigenetic interventions and therapies.
The integrin family is composed of 24 members and approximately ten years ago (2003) we published a book devoted to the nine I domain integrin subunits. In this second edition, I am pleased that most of the original authors have been able to contribute to the updated version. I domain containing integrins include collagen receptors and leukocyte receptors. In 2003 the knockout mouse phenotypes for all of the I domain integrins had not yet been published; they are now, and are summarized and discussed in this edition. Interestingly, a recent 10 integrin mutation in dogs has indicated that collagen-binding integrins in the musculoskeletal system might have much more severe phenotypes in larger animals/humans compared to the mild integrin phenotypes observed in collagen-binding integrin deficient mice. This finding is further discussed in the book. In the cancer field, the microenvironment is taking center stage, and here collagen receptors on fibroblasts are predicted to play important roles in paracrine signaling, in regulating tissue stiffness and matrix remodeling. New technologies, new mouse models in combination with analyses of I integrins in larger animals/humans are thus predicted to increase our knowledge about this group of receptors. With this in mind we look forward to another 10 years of research with I domain integrins.
This new edition explores current and emerging mutagenesis methods focusing specifically on mammalian systems and commonly used model organisms through comprehensive coverage and detailed protocols. Since the first edition, major advances and discoveries have made chromosomal mutagenesis a widely used technique and one that is available to any molecular biology laboratory, and this collection provides detailed protocols, case-studies, and reviews from thought-leaders in the field. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and fully updated, Chromosomal Mutagenesis, Second Edition aims to help speed scientific discovery and aid in the next advances in the field.
Cancer Genomics and Proteomics: Methods and Protocols, Second Edition includes methods for the analyses of cancer genome and proteome that have illuminated us about the changes in cancer cells. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Cancer Genomics and Proteomics: Methods and Protocols, Second Edition seeks to aid scientists in the further study into various aspects of tumor initiation and progression.
Hox Genes: Methods and Protocols explores techniques and methodologies which arose from or were successfully applied to the study of Hox genes and Hox proteins, at the intersection of experimental embryology, genetics, biochemistry, physiology, evolutionary biology and other life sciences. This detailed volume begins with a section on discovery and functional analysis of Hox genes and then it continues onward to discuss mode of action and biomedical applications of Hox proteins. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and tips on troubleshooting and avoiding known pitfalls. Expert and practical, Hox Genes: Methods and Protocols serves as an ideal guide to researchers striving to move forward in this dynamic and exciting area of study. |
![]() ![]() You may like...
Every Day Is An Opening Night - Our…
Des & Dawn Lindberg
Paperback
![]()
Beyond The Story - 10 Year Record Of BTS
Bts, Myeongseok Kang
Hardcover
![]()
|