![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > Other branches of medicine > Medical imaging
Continuing the research of the best-selling first edition, this second edition collects three more years of research in the ever-expanding study of the cell membrane. It covers the latest developments in the "traditional" patch techniques. This authoritative second edition updates the standard techniques while introducing three brand new, cutting-edge technical advances in the field. Thorough and timely, this edition is an invaluable resource.
- First book to focus on deep learning-based approaches in the field of cancer diagnostics. - Covers the state of the art across a wide-range of topics. - Topics include preprocessing data, prediction of cancer susceptibility and reoccurence, detection of different cancers, complexity and challenges.
Synchrotron radiation has been a revolutionary and invaluable research tool for a wide range of scientists, including chemists, biologists, physicists, materials scientists, geophysicists. It has also found multidisciplinary applications with problems ranging from archeology through cultural heritage to paleontology. The subject of this book is x-ray spectroscopy using synchrotron radiation, and the target audience is both current and potential users of synchrotron facilities. The first half of the book introduces readers to the fundamentals of storage ring operations, the qualities of the synchrotron radiation produced, the x-ray optics required to transport this radiation, and the detectors used for measurements. The second half of the book describes the important spectroscopic techniques that use synchrotron x-rays, including chapters on x-ray absorption, x-ray fluorescence, resonant and non-resonant inelastic x-ray scattering, nuclear spectroscopies, and x-ray photoemission. A final chapter surveys the exciting developments of free electron laser sources, which promise a second revolution in x-ray science. Thanks to the detailed descriptions in the book, prospective users will be able to quickly begin working with these techniques. Experienced users will find useful summaries, key equations, and exhaustive references to key papers in the field, as well as outlines of the historical developments in the field. Along with plentiful illustrations, this work includes access to supplemental Mathematica notebooks, which can be used for some of the more complex calculations and as a teaching aid. This book should appeal to graduate students, postdoctoral researchers, and senior scientists alike.
Completely up to date with the latest examination changes, Get Through First FRCR: Questions for the Anatomy Module offers a valuable insight into the updated anatomy module of the First FRCR examination. Over 150 5-part picture questions are presented according to syllabus topics, accurately reflecting the content, style and level of difficulty of the actual examination questions. Anatomical images are included from all modalities commonly used in current radiological practice (plain x-rays, CT, MRI, ultrasound, nuclear medicine). Each question includes a full explanation for each of the 5 stems, providing appropriate anatomy knowledge and relevant radiological learning points for the candidate. Featuring a wealth of practice questions plus one full mock examination, this book has been designed for candidates to assess their knowledge, identify topics that require further study and to build up confidence in preparation for the exam day. Written by Specialty Trainees in Radiology, Get Through First FRCR: Questions for the Anatomy Module is the essential revision tool for all First FRCR candidates preparing for the newly revised examination.
With its ability to explore the surface of the sample by means of a local scanning probe and its use of dedicated software allows to be visualize results, atomic force microscopy (AFM) has revolutionized the study of the smallest aspects of life. Atomic Force Microscopy in Biomedical Research: Methods and Protocols proves that this technology is no longer simply just another form of microscopy but has given rise to a completely new way of using microscopy that fulfils the dreams of all microscopists: being able to touch, move, and interact with the sample while it is being examined, thus making it possible to discover not only morphological but also chemical and physical structural information. Covering such topics as molecule imaging, nanoscale surface analysis and cellular imaging, force-spectroscopy, investigating drug action, and AFM as a nanotool, this volume features the most up-to-date techniques currently in use. Written in the Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials, step-by-step, readily reproducible protocols, and expert tips on troubleshooting and avoiding known pitfalls. Comprehensive and cutting-edge, Atomic Force Microscopy in Biomedical Research: Methods and Protocols brings together different types of applications in order to provide examples from diverse fields in the hope of inspiring researchers to apply their ingenuity in their own specialization and add significant originality to their varying studies.
X-ray imaging is a corner stone of breast cancer diagnosis. By exploiting the phase shift of X-rays rather than their attenuation, phase-contrast tomography has the potential to dramatically increase the visibility of small and low contrast features, thus leading to better diagnosis. This thesis presents research on the first synchrotron-based project developing a clinical phase-contrast breast computed tomography (CT) setup at Elettra, the Italian Syncrotron Radiation Facility. This book includes a comprehensive theoretical background on propagation-based phase-contrast imaging, exploring and extending the most recent image formation models. Along with theory, many practical implementation and optimization issues, ranging from detector-specific processing to setup geometry, are tackled on the basis of a large number of experimental evidences. Most of the modelling results and data analysis have general validity, being a valuable framework for optimization of phase-contrast setups. Results obtained at synchrotron are also compared with "real world" laboratory sources: both a first-of-its-kind comparison with one of the few hospital breast CT systems and a state-of-the-art implementation of monochromatic phase-contrast micro-tomography with a conventional rotating anode source are presented. On a more general level, this work sheds a light on the importance of synchrotron-based clinical programs, which are key to trigger the long-anticipated transition of phase-contrast imaging from synchrotrons to hospitals.
Key features: Consolidates concepts and assists in the understanding and applications of theoretical concepts in medical physics Assists lecturers and instructors in setting assignments and tests Suitable as a revision tool for postgraduate students sitting medical physics, oncology, and radiology science examinations
This book covers the state-of-the-art research on advanced high-resolution tomography, exploring its role in regenerative medicine. and also explores the 3D interactions between tissues, cells, and biomaterials. Various multidisciplinary paths in regenerative medicine are covered, including X-ray microtomography and its role in regenerative medicine, synchrotron radiation-based microtomography and phase contrast tomography, the challenge of the vascularization of regenerated tissues, lung and cartilage imaging, and more. This is an ideal book for biomedical engineers, biologists, physicists, clinicians, and students who want to pursue their studies in the field of regenerative medicine. This book also: Reviews in detail the algorithms and software used for the 3D exploration of regenerated tissue Covers the latest research on the use of X-ray microtomography for muscle diseases Details applications of synchrotron radiation tomography in orthopedics and dentistry
This book talks about photoplethysmography (PPG) techniques based on computer-aided data processing. In particular, it presents the results of a co-operative Indo-German project on the topic between Indian Institute of Technology at Chennai and RWTH Aachen University. Measuring system design, experimental details and some preliminary results obtained so far within the framework of this project are presented here. From the investigations carried out so far using the PPG sensors in conjunction with breathing sensors, it has been possible to monitor the 0.125 to 0.15 Hz rhythms in the arterial volumetric changes and to study the influence of breathing on them. These rhythms, which according to medical experts have relevance to psychosomatic conditions e.g. stress or relaxation, can also be addressed to by ancient Indian practices like yoga and meditation. This book presents the results of studying the effects of Indian relaxation techniques like pranayama, meditation, etc. in comparison to western relaxation techniques like autogenic training. So far it has been established that the Indian techniques of relaxation like yoga and meditation are very effective in generating low frequency rhythms in the skin perfusion as monitored by optical sensors. According to medical experts, these low frequency rhythms have a very important bearing on the human physiology and have potential therapeutic implications. This book is meant to provide an overview of the current state-of-knowledge and encourage the next generation of scientists/engineers to carry this work forward, especially on the novel PPG application fields that are of growing importance like pain and stress assessment, detection of peripheral venous saturation and local arterio-venous oxygen consumption as well as contactless space resolved skin perfusion studies with modern camera based PPG technology.
Biomedical EPR - Part A focuses on applications of EPR spectroscopy in the areas of free radicals, metals, medicine, and physiology. The book celebrates the 70th birthday of Prof. James S. Hyde, Medical College of Wisconsin, and his contributions to this field. Chapters are written to provide introductory material for new-comers to the field which lead into up-to-date reviews that provide perspective on the wide range of questions that can be addressed by EPR. Key Features: Radicals in vivo and in Model Systems, and their Study by Spin Trapping In vivo EPR, including Oximetry and Imaging Time Domain EPR at Radio Frequencies EPR of Copper Complexes: Motion and Frequency Dependence Time Domain EPR and Electron Spin Echo Envelope Modulation
Spreading to every corner of the Earth, the COVID-19 virus has had an unparalleled impact on all aspects of our lives. This book explores in detail how the COVID-19 pandemic has affected clinical practice, education, and research in medical physics, and how colleagues on the frontline dealt with this unpredictable and unprecedented pandemic. It tackles key questions such as: How did medical physicists first respond to the situation? What innovative strategies were taken and how effective were they? How are medical physicists preparing for the future? There will be a focus on the different experiences of regional medical physicists and the responses and outlooks in clinical practice, education, and research in the affected continents, Asia-Pacific, the Middle East, Europe, Africa and North and Latin America. With over 91 contributors from 39 countries, this unique resource contains key perspectives from teams from each territory to ensure a global range of accounts. The collective opinion and wisdom from the major medical physics journal editors-in-chief are also explored, alongside how the pandemic has affected the quantity and quality of publications. Voices of early-career researchers and students of medical physics will be included, with narratives of their experiences coping with life during the pandemic. Lastly, communicating leadership in times of adversity is highlighted. This book will be a historic account of the impact of the COVID-19 virus on the field of medical physics. It will be an ideal reference for medical physicists, medical physics trainees and students, hospital administrators, regulators, and healthcare professionals allied with medical physics. Key features: The first book to cover the impact of COVID-19 on the field of medical physics Edited by two experts in the field, with chapter contributions from subject area specialists around the world Broad, global coverage, ranging from the impact on teaching, research, and publishing, with unique perspectives from journal editors and students and trainees
This volume explores the revolutionary fMRI field from basic principles to state-of-the-art research. It covers a broad spectrum of topics, including the history of fMRI's development using endogenous MR blood contrast, neurovascular coupling, pulse sequences for fMRI, quantitative fMRI; fMRI of the visual system, auditory cortex, and sensorimotor system; genetic imaging using fMRI, multimodal neuroimaging, brain bioenergetics and function and molecular-level fMRI. Comprehensive and intuitively structured, this book engages the reader with a first-person account of the development and history of the fMRI field by the authors. The subsequent sections examine the physiological basis of fMRI, the basic principles of fMRI and its applications and the latest advances of the technology, ending with a discussion of fMRI's future. fMRI: From Nuclear Spins to Brain Function, co-edited by leading and renowned fMRI researchers Kamil Ugurbil, Kamil Uludag and Lawrence Berliner, is an ideal resource for clinicians and researchers in the fields of neuroscience, psychology and MRI physics.
This book fills the gap between the increasing demand for epilepsy surgical experience and limited training facilities in this area. It comprehensively describes surgical techniques, including tricks and pitfalls, based on the author's 30 years of experience, providing optimal and effective training for young neurosurgeons by avoiding learning by trial and error. Moreover, it also includes useful information for epileptologists and other professionals involved in the epilepsy surgical program to allow them to gain a better understanding of possibilities and limitations of epilepsy surgery.
Automatic detection and segmentation of anatomical structures in medical images are prerequisites to subsequent image measurements and disease quantification, and therefore have multiple clinical applications. This book presents an efficient object detection and segmentation framework, called Marginal Space Learning, which runs at a sub-second speed on a current desktop computer, faster than the state-of-the-art. Trained with a sufficient number of data sets, Marginal Space Learning is also robust under imaging artifacts, noise and anatomical variations. The book showcases 35 clinical applications of Marginal Space Learning and its extensions to detecting and segmenting various anatomical structures, such as the heart, liver, lymph nodes and prostate in major medical imaging modalities (CT, MRI, X-Ray and Ultrasound), demonstrating its efficiency and robustness.
This is an introduction to recent developments in the application of wave-splitting methods to direct and inverse scattering of wave fields. Here wave-splitting refers to the decomposition of the total field into two components which propagate in opposite directions. Although the text emphasizes time domain methods, it includes some applications to frequency domain problems.
Ultrasound imaging technology has experienced a dramatic change in the last 30 years. Because of its non-invasive nature and continuing improvements in image quality, ultrasound imaging is progressively achieving an important role in the assessment and characterization of cardiovascular imaging. Speckle is inherent in ultrasound imaging giving rise to a granular appearance instead of homogeneous, flat shades of gray, as is visible and as such, speckle can severely compromise interpretation of ultrasound images, particularly in discrimination of small structures. On the other hand, speckle can be used in the detection of time varying phenomena, or tracking tissue motion. The objective of this book is to provide a reference edited volume covering the whole spectrum of speckle phenomena, theoretical background and modelling, algorithms and selected applications in cardiovascular ultrasound imaging and video processing and analysis. The book is organized under the following four parts, Part I: Introduction to Speckle Noise; Part II: Speckle Filtering; Part III: Speckle Tracking; Part IV: Selected Applications in Cardiovascular Imaging.
This book opens with an introduction to the main purpose and tasks of the GIANA challenge, as well as a summary and an analysis of the results and performance obtained by the 20 participating teams. The early and accurate diagnosis of gastrointestinal diseases is critical for increasing the chances of patient survival, and efficient screening is vital for locating precursor lesions. Video colonoscopy and wireless capsule endoscopy (WCE) are the gold-standard tools for colon and intestinal tract screening, respectively. Yet these tools still present some drawbacks, such as lesion miss rate, lack of in vivo diagnosis capabilities, and perforation risk. To mitigate these, computer-aided detection/diagnosis systems can play a key role in assisting clinicians in the different stages of the exploration. This book presents the latest, state-of-the-art approaches in this field, and also tackles the clinical considerations required to efficiently deploy these systems in the exploration room. The coverage draws upon results from the Gastrointestinal Image Analysis (GIANA) Challenge, part of the EndoVis satellite events of the conferences MICCAI 2017 and 2018. Each method proposed to address the different subtasks of the challenges is detailed in a separate chapter, offering a deep insight into this topic of interest for public health. This book appeals to researchers, practitioners, and lecturers spanning both the computer vision and gastroenterology communities.
Titles in the Pocket Tutor series give practical guidance on subjects that medical students and foundation doctors need help with ‘on the go’, at a highly-affordable price that puts them within reach of those rotating through modular courses or working on attachment.  Topics reflect information needs stemming from today’s integrated undergraduate and foundation courses: Common presentations Investigation options (e.g. ECG, imaging) Clinical and patient-orientated skills (e.g. examinations, history-taking) The highly-structured, bite-size content helps novices combat the ‘fear factor’ associated with day-to-day clinical training and provides a detailed resource that students and junior doctors can carry in their pocket.   Key points Guide to appearance of normal images and abnormal signs helps you navigate imaging results successfully and recognise underlying pathology Clearly labelled, high-quality images teach you to identify anatomical landmarks and clinical signs Concise disease descriptions give key facts and cardinal imaging features to look out for in practice New to this edition: chapter on thoracic trauma and over 50 additional X-ray images, including those of newer medical devices Previous edition (9781907816062) published in 2012
Deep learning is providing exciting solutions for medical image analysis problems and is seen as a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component have been applied to medical image detection, segmentation and registration, and computer-aided analysis, using a wide variety of application areas. Deep Learning for Medical Image Analysis is a great learning resource for academic and industry researchers in medical imaging analysis, and for graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis.
This book covers all various research areas using nano systems in the field of bio nanotechnology to fight against cancer for diagnosis and therapy including drug delivery from fundamentals to advanced levels. Book has designed such a way that, anyone who is interested to understand, learn or start his/her research career in the field of bio nanotechnology in cancer, can use as a gateway to enter in to the field as well as a serious advanced researcher can use as the reference text book. Due to multidisciplinary nature of the subject, the book has written so that advanced undergraduate, graduate, postgraduate and researchers from different fields can follow and understand the subject very easily. Plenty of figures and art works are used to convey the idea visibly and effortlessly
This book serves as a practical guide for the use of stereotactic body radiation therapy in clinics. On the basis of more than 10 years of clinical experience with lung cancer, liver cancer and other cancers, a remarkable volume of knowledge has been accumulated. At the same time, great progress in techniques has been achieved. Various new fixing apparatuses, new respiratory regulation techniques, new dose fractionation schedules and new image-guided radiation therapy machines have been developed. This book reviews the history of those developments and reports on various types of toxicities. Review of recent clinical studies is also included. The authors were key members of the JCOG 0403 clinical trials on stereotactic body radiation therapy (SBRT) for both inoperable and operableT1N0M0 primary lung cancer. Readers will learn of the superior outcomes obtained with SBRT for lung cancer and other cancers in terms of local control and toxicities. With its practical focus, this book will benefit radiation oncologists, medical physicists, medical dosimetrists, radiation therapists and senior nurses as well as medical oncologists and surgical oncologists who are interested in radiotherapy.
In this issue of Neuroimaging Clinics, guest editor Dr. Tarik F. Massoud brings his considerable expertise to the topic of Neuroimaging Anatomy, Part 2: Head, Neck, and Spine. Anatomical knowledge is critical to reducing both overdiagnosis and misdiagnosis in neuroimaging. This issue is part two of a two-part series on neuroimaging anatomy that focuses on the head, neck, and spine. Each article addresses a specific area such as the orbits, sinonasal cavity, temporal bone, pharynx, larynx, and spinal cord. Contains 14 relevant, practice-oriented topics including anatomy of the orbits; maxillofacial skeleton and facial anatomy; temporal bone anatomy; craniocervical junction and cervical spine anatomy; anatomy of the spinal cord, coverings, and nerves; and more. Provides in-depth clinical reviews on neuroimaging anatomy of the head, neck, and spine, offering actionable insights for clinical practice. Presents the latest information on this timely, focused topic under the leadership of experienced editors in the field. Authors synthesize and distill the latest research and practice guidelines to create clinically significant, topic-based reviews.
For those who treat and diagnose liver disease, whether radiologists, emergency medical physicians, hepatologists, or sonographers, a clear understanding of the strict protocol needed to obtain accurate measurements is essential. Multiparametric Ultrasound for the Assessment of Diffuse Liver Disease offers a practical approach to liver shear wave elastography acquisition from globally recognized leaders in the field. It answers critical questions such as how to use each of the current techniques to best characterize your patients' liver disease, how to deal with the limitations of each of these techniques, and what to ask-and not to ask-of your devices and software. Presents an overview of conventional ultrasound findings in chronic liver disease and portal hypertension, and presents the basic concepts and protocols needed to measure liver stiffness and interpret liver stiffness values. Details clinical applications, artifacts, and guidelines of liver ultrasound elastography, including tips and tricks. Reviews the latest ultrasound techniques to assess liver steatosis and focal liver lesions, as well as the uses of new technologies of fat quantification and dispersion. An eBook version is included with purchase. The eBook allows you to access all of the text, figures and references, with the ability to search, customize your content, make notes and highlights, and have content read aloud.
Radiologists in emergency department settings are uniquely positioned to identify and provide effective, appropriate care to vulnerable patient populations. Emergency Imaging of At-Risk Patients fills a void in the literature by illustrating challenges in emergency and trauma imaging of vulnerable patients using a head-to-toe approach. Drawing on the vast clinical experience of emergency and trauma radiologists from the largest academic medical centers across North America, this reference presents basic and advanced emergency imaging concepts, relevant case studies, current controversies and protocols, and subtle imaging findings that help guide clinicians to efficient and accurate diagnoses and treatments. Provides a comprehensive, evidence-based approach to imaging of non-traumatic and traumatic emergencies in at-risk patients. Covers acute brain, thoracic, abdominal, and musculoskeletal conditions, including the unique challenges of imaging pregnant, geriatric, bariatric, cancer, immunocompromised, and pediatric patients, as well as patients using recreational drugs. Describes specific applications of ultrasound, MRI, radiography, and multidetector computed tomography (MDCT). Reviews recent imaging-related clinical literature and appropriate criteria and guidelines. A valuable tool for emergency and general radiologists, as well as pediatricians, obstetricians, gynecologists, orthopedic, trauma surgeons, and trainees in all specialties. Enhanced eBook version included with purchase. Your enhanced eBook allows you to access all of the text, figures, and references from the book on a variety of devices. |
You may like...
The Young and the Elderly at Risk…
Ioana Salagean, Catalina Lomos, …
Paperback
R1,810
Discovery Miles 18 100
Jesus' Every Word and Deed - Woven from…
John C Burkhalter
Paperback
The Book Every Leader Needs To Read…
Abed Tau, Adriaan Groenewald, …
Paperback
|