![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Metals technology / metallurgy
Metal Matrix Composites, Two Volume Set cover fabrication, production, manufacturing techniques including micro and nano-reinforcements for hybrid structures, and applications like tribological behaviours, corrosion behaviour, heat exchanger and so forth. It describes synthesis of micro/nano MMCs with multivariate approach for production. Each chapter covers different perspectives of micro/nano reinforcement and related applications. Features: Provides in-depth information on fabrication, production and advanced manufacturing of Metal Matrix Composites (MMCs) . Emphasizes on advanced processing methods like metal 3D printing, additive and subtractive manufacturing techniques. Presents detailed analysis on new age reinforcements in Metal Matrix Composites (MMCs). Covers details about convergence of hybrid composites from conventional alloys. Includes mechanisms and effects of various reinforcement on pertinent properties. This book aims at Graduate students, Researchers and Professionals in Micro/Nano science & Technology, Mechanical Engineering, Industrial Engineering, Metallurgy, and Composites.
This book provides a comprehensive and thorough guide to those readers who are lost in the often-confusing context of weld fatigue. It presents straightforward information on the fracture mechanics and material background of weld fatigue, starting with fatigue crack initiation and short cracks, before moving on to long cracks, crack closure, crack growth and threshold, residual stress, stress concentration, the stress intensity factor, J-integral, multiple cracks, weld geometries and defects, microstructural parameters including HAZ, and cyclic stress-strain behavior. The book treats all of these essential and mutually interacting parameters using a unique form of analysis.
This collection features papers presented at the 146th Annual Meeting & Exhibition of The Minerals, Metals & Materials Society.
This book describes and illustrates metal spray and spray deposition from the process engineering, metallurgical, and application viewpoints. The authors include step-by-step fundamental information for the metal spray process and detail current engineering developments and applications. They offer industry insight on non-equilibrium solidification processes for yielding stable metal structures and properties.
This book details the rigorous requirements for refractories designed for aluminium metallurgical processes: reduction, cast house, and anode production. The author describes requirements specific to the properties and structure of refractory materials that differentiate it from materials used for ferrous metallurgy, among others. A comparison is drawn between the properties and structure of refractories and carbon cathode materials from different points of view: from the perspective of physical chemistry and chemical interactions during the metallurgical process and from the aspect of designing reduction pots and furnaces to accommodate the lifetime of metallurgical aggregates that are a part of aluminum refractory processes.
This collection offers new research findings, innovations, and industrial technological developments in extractive metallurgy, energy and environment, and materials processing. Technical topics included in the book are thermodynamics and kinetics of metallurgical reactions, electrochemical processing of materials, plasma processing of materials, composite materials, ionic liquids, thermal energy storage, energy efficient and environmental cleaner technologies and process modeling. These topics are of interest not only to traditional base ferrous and non-ferrous metal industrial processes but also to new and upcoming technologies, and they play important roles in industrial growth and economy worldwide.
This book describes and systemizes analytical and numerical solutions for a broad range of instantaneous and continuous, stationary and moving, concentrated and distributed, 1D, 2D and 3D heat sources in semi-infinite bodies, thick plane layers, thin plates and cylinders under various boundary conditions. The analytical solutions were mainly obtained by the superimposing principle for various parts of the proposed 1D, 2D and 3D heat sources and based on the assumption that only heat conduction plays a major role in the thermal analysis of welds. Other complex effects of heat transfer in weld phenomena are incorporated in the solutions by means of various geometrical and energetic parameters of the heat source. The book is divided into 13 chapters. Chapter 1 briefly reviews various welding processes and the energy characteristics of welding heat sources, while Chapter 2 covers the main thermophysical properties of the most commonly used alloys. Chapter 3 describes the physical fundamentals of heat conduction during welding, and Chapter 4 introduces several useful methods for solving the problem of heat conduction in welding. Chapters 5 and 6 focus on the derivation of analytical solutions for many types of heat sources in semi-infinite bodies, thick plane layers, thin plates and cylinders under various boundary conditions. The heat sources can be instantaneous or continuous, stationary or moving, concentrated or distributed (1D, 2D or 3D). In Chapter 7 the temperature field under programmed heat input (pulsed power sources and weaving sources) is analyzed. In turn, Chapters 8 and 9 cover the thermal cycle, melting and solidification of the base metal. Heating and melting of filler metal are considered in Chapter 10. Chapter 11 addresses the formulation and solution of inverse heat conduction problems using zero-, first- and second-order algorithms, while Chapter 12 focuses on applying the solutions developed here to the optimization of welding conditions. In addition, case studies confirm the usefulness and feasibility of the respective solutions. Lastly, Chapter 13 demonstrates the prediction of local microstructure and mechanical properties of welded joint metals, while taking into account their thermal cycle. The book is intended for all researches, welding engineers, mechanical design engineers, research engineers and postgraduate students who deal with problems such as microstructure modeling of welds, analysis of the mechanical properties of welded metals, weldability, residual stresses and distortions, optimization of welding and allied processes (prewelding heating, cladding, thermal cutting, additive technologies, etc.). It also offers a useful reference guide for software engineers who are interested in writing application software for simulating welding processes, microstructure modeling, residual stress analysis of welds, and for robotic-welding control systems.
A Complete, Up-to-Date Introduction to Corrosion of Stainless
Steels and Metallurgical Factors This fully updated Second Edition
of Corrosion of Stainless Steels covers the tremendous advances
made with stainless steels in recent decades, including
applications in many new areas--from marine technologies and
off-shore oil production to power plants and the kitchen sink. This
book offers unique insights into the corrosion mechanisms affecting
stainless steels, details problem-avoidance strategies, and helps
identify corrosion-resistant capabilities for these remarkable
alloys Sponsored by the Electrochemical Society, Corrosion os
Stainless Steels
This book covers various aspects of characterization of materials in the areas of metals, alloys, steels, welding, nanomaterials, intermetallic, and surface coatings. These materials are obtained by different methods and techniques like spray, mechanical milling, sol-gel, casting, biosynthesis, and chemical reduction among others. Some of these materials are classified according to application such as materials for medical application, materials for industrial applications, materials used in the oil industry and materials used like coatings. The authors provide a comprehensive overview of structural characterization techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, image analysis, finite element method (FEM), optical microscopy (OM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), differential thermal analysis (DTA), differential scanning calorimetry (DSC), ultraviolet-visible spectroscopy (UV-Vis), infrared photo-thermal radiometry (IPTR), electrochemical impedance spectroscopy (EIS), thermogravimetry analysis (TGA), thermo luminescence (TL), photoluminescence (PL), high resolution transmission electron microscopy (HRTEM), and radio frequency (RF). The book includes theoretical models and illustrations of characterization properties-both structural and chemical.
This book highlights the industrial potential and explains the physics behind laser metal deposition (LMD) technology. It describes the laser metal deposition (LMD) process with the help of numerous diagrams and photographs of real-world process situations, ranging from the fabrication of parts to the repair of existing products, and includes case studies from current research in this field. Consumer demand is moving away from standardized products to customized ones, and to remain competitive manufacturers require manufacturing processes that are flexible and able to meet consumer demand at low cost and on schedule. Laser metal deposition (LMD) is a promising alternative manufacturing process in this context. This book enables researchers and professionals in industry gain a better understanding of the LMD process, which they can then use in real-world applications. It also helps spur on further innovations.
The volume contains more than 70 papers covering the important topics and issues in metallurgy today including papers as follows: keynote papers covering a tribute to David Robertson, workforce skills needed in the profession going forward, copper smelting, ladle metallurgy, process metallurgy and resource efficiency, new flash iron making technology, ferro-alloy electric furnace smelting and on the role of bubbles in metallurgical processing operations. Topics covered in detail in this volume include ferro-alloys, non-ferrous metallurgy, iron and steel, modeling, education, and fundamentals.
This book introduces the materials and traditional processes involved in the manufacturing industry. It discusses the properties and application of different engineering materials as well as the performance of failure tests. The book lists both destructible and non-destructible processes in detail. The design associated with each manufacturing processes, such Casting, Forming, Welding and Machining, are also covered.
This book presents guidelines on quantitative and qualitative measures of the geometric features and imperfections of welds to ensure that it meets the fatigue strength requirements laid out in the recommendations of the IIW (International Institute of Welding). Welds that satisfy these quality criteria can be assessed in accordance with existing IIW recommendations based on nominal stress, structural stress, notch stress or linear fracture mechanics. Further, the book defines more restrictive acceptance criteria based on weld geometry features and imperfections with increased fatigue strength. Fatigue strength for these welds is defined as S-N curves expressed in terms of nominal applied stress or hot spot stress. Where appropriate, reference is made to existing quality systems for welds.In addition to the acceptance criteria and fatigue assessment curves, the book also provides guidance on their inspection and quality control. The successful implementation of these methods depends on adequate training for operators and inspectors alike. As such, the publication of the present IIW Recommendations is intended to encourage the production of appropriate training aids and guidelines for educating, training and certifying operators and inspectors.
The process of producing components to final net-shapes is fast becoming a desirable goal for metal working industries. This is due to a combination of factors such as the development of new materials and escalating energy costs. Computer Applications in Near Net-Shape Operations addresses the design, analysis and simulation of near net-shape operations using some of the most advanced computer techniques and tools available. Topics covered include: Sheet metal forming operations: progressive stamping, fine blanking, nesting, flat pattering, bending and nibbling; Die design, construction and NC programming of wire EDM; Bulk metal forming processes such as cold upsetting and close-die forging; Injection mould design, analysis and simulation; Computer-aided design of CNC machines for near net-shape operations; Intelligent progressive die design system IPD. This collection of the latest developments from leading experts in the field will be of interest to practising engineers, graduate students and researchers of metal forming, stamping, mould and die design.
This book provides a comprehensive introduction to numerical modeling of size effects in metal plasticity. The main classes of strain gradient plasticity formulations are described and efficiently implemented in the context of the finite element method. A robust numerical framework is presented and employed to investigate the role of strain gradients on structural integrity assessment. The results obtained reveal the need of incorporating the influence on geometrically necessary dislocations in the modeling of various damage mechanisms. Large gradients of plastic strain increase dislocation density, promoting strain hardening and elevating crack tip stresses. This stress elevation is quantified under both infinitesimal and finite deformation theories, rationalizing the experimental observation of cleavage fracture in the presence of significant plastic flow. Gradient-enhanced modeling of crack growth resistance, hydrogen diffusion and environmentally assisted cracking highlighted the relevance of an appropriate characterization of the mechanical response at the small scales involved in crack tip deformation. Particularly promising predictions are attained in the field of hydrogen embrittlement. The research has been conducted at the Universities of Cambridge, Oviedo, Luxembourg, and the Technical University of Denmark, in a collaborative effort to understand, model and optimize the mechanical response of engineering materials.
Providing a comprehensive overview of hot stamping (also known as 'press hardening'), this book examines all essential aspects of this innovative metal forming method, and explores its various uses. It investigates hot stamping from both technological and business perspectives, and outlines potential future developments. Individual chapters explore topics such as the history of hot stamping, the state of the art, materials and processes employed, and how hot stamping is currently being used in the automotive industry to create ultra-high-strength steel components. Drawing on experience and expertise gathered from academia and industry worldwide, the book offers an accessible resource for a broad readership including students, researchers, vehicle manufacturers and metal forming companies.
The "Metal Forming Handbook" presents the fundamentals of metal forming processes and press design. As a textbook and reference work in one, it provides an in-depth study of the major metal forming technologies: sheet metal forming, cutting, hydroforming and solid forming.Written by qualified, practically-oriented experts for practical implementation, supplemented by sample calculations and illustrated throughout by clearly presented color figures and diagrams, this book provides fundamental information on the state-of-the-art in the field of metal forming technology.
This collection presents papers from a symposium on extraction of rare metals as well as rare extraction processing techniques used in metal production. Topics include the extraction and processing of elements like antimony, arsenic, gold, indium, palladium, platinum, rare earth metals including yttrium and neodymium, titanium, tungsten, and vanadium. Rare processing techniques are covered, including direct extraction processes for rare-earth recovery, biosorption of precious metals, fluorination behavior of uranium and zirconium mixture of fuel debris treatment, and recovery of valuable components of commodity metals such as zinc, nickel, and metals from slag.
This book provides a comprehensive overview of the main nuclear characterization techniques used to study hydrogen absorption and desorption in materials. The various techniques (neutron scattering, nuclear magnetic resonance, ion-beams, positron annihilation spectroscopy) are explained in detail, and a variety of examples of recent research projects are given to show the unique advantage of these techniques to study hydrogen in materials. Most of these nuclear techniques require very specialized instrumentation, and there are only a handful of these instruments available worldwide. Therefore, the aim of this book is to reach out to a readership with a very diverse background in the physical sciences and engineering and a broad range of hydrogen-related research interests. The same technique can be used by researchers interested in the improvement of the performance of hydrogen storage materials and by those focused on hydrogen ingress causing embrittlement of metals. The emphasis of this book is to provide tutorial material on how to use nuclear characterization techniques for the investigation of hydrogen in materials - information that cannot readily be found in conference and regular research papers. Provides a comprehensive overview of nuclear techniques used for hydrogen-related research Explains all nuclear techniques in detail for the non-expert Covers the whole range of hydrogen-related research Features chapters written by world-renowned experts in nuclear technique and hydrogen-related research
This collection provides researchers and industry professionals with complete guidance on the synthesis, analysis, design, monitoring, and control of metals, materials, and metallurgical processes and phenomena. Along with the fundamentals, it covers modeling of diverse phenomena in processes involving iron, steel, non-ferrous metals, and composites. It also goes on to examine second phase particles in metals, novel sensors for hostile-environment materials processes, online sampling and analysis techniques, and models for real-time process control and quality monitoring systems.
This book details aluminum alloys with special focus on the aluminum silicon (Al-Si) systems - that are the most abundant alloys second only to steel. The authors include a description of the manufacturing principles, thermodynamics, and other main characteristics of Al-Si alloys. Principles of processing, testing, and in particular applications in the Automotive, Aeronautical and Aerospace fields are addressed. |
![]() ![]() You may like...
The Welding Engineer's Guide to Fracture…
Philippa Moore, Geoff Booth
Hardcover
R3,896
Discovery Miles 38 960
Metalworking Fluids (MWFs) for Cutting…
V.P. Astakhov, S. Joksch
Hardcover
R4,659
Discovery Miles 46 590
Fundamentals of Magnesium Alloy…
Mihriban O. Pekguleryuz, Karl Kainer, …
Hardcover
R4,191
Discovery Miles 41 910
Rubber-Pad Forming Processes…
Maziar Ramezani, Zaidi Mohd Ripin
Hardcover
R4,201
Discovery Miles 42 010
Comprehensive Organometallic Chemistry…
Gerard Parkin, Karsten Meyer, …
Hardcover
R181,402
Discovery Miles 1 814 020
Fluoropolymer Applications in the…
Sina Ebnesajjad, Pradip R Khaladkar
Hardcover
R7,355
Discovery Miles 73 550
|