![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Metals technology / metallurgy
This book provides a detailed description and analysis of the reduction and metabolism of metals and metalloids by sulfate reducing bacteria. The molecular mechanisms of bacterial resistance to copper are examined as well as extracellular electron transfer and bacterial metal oxide respiration. Furthermore, in this book enrichment, isolation, and physiology of magnetotactic bacteria are discussed. The interactions of bacteria with metals in natural environments and their role in metal cycling have been studied for decades. Advances in studies of bacteria-metal interactions identified numerous important aspects of these interactions, such as bioremediation of metal-contaminated environments, the role of metals in redox reactions and other cellular functions, as well as the role of metals in toxicity and infection. Microbiologists, environmental scientists, and students interested in microbe interactions with metals and their effect on the environment and their application in biotechnology will be interested in the topics discussed in the book.
This book covers the continually expanding field of metal nanoparticles and clusters, in particular their size-dependent properties and quantum phenomena. The approaches to the organization of atoms that form clusters and nanoparticles have been advancing rapidly in recent times. These advancements are described through a combination of experimental and computational approaches and are covered in detail by the authors. Recent highlights of the various emerging properties and applications ranging from plasmonics to catalysis are showcased.
This comprehensive book contains contributions from specialists who provide a complete status update along with outstanding issues encompassing different topics related to deep-sea mining. Interest in exploration and exploitation of deep-sea minerals is seeing a revival due to diminishing grades and increasing costs of processing of terrestrial minerals as well as availability of several strategic metals in seabed mineral resources; it therefore becomes imperative to take stock of various issues related to deep-sea mining. The authors are experienced scientists and engineers from around the globe developing advanced technologies for mining and metallurgical extraction as well as performing deep sea exploration for several decades. They invite readers to learn about the resource potential of different deep-sea minerals, design considerations and development of mining systems, and the potential environmental impacts of mining in international waters.
This book includes papers on recent research carried out in the field of metal-matrix composites (MMCs). Processing, microstructure, and mechanical properties of MMCs and unreinforced matrix alloys will be covered with a focus on aluminum, titanium, nickel, and copper MMCs. Those involved in the research of MMCs and unreinforced alloys, particularly in aerospace, space, and automotive materials research, will find this volume indispensible.
The fundamental properties of deep luminescence centres in Si associated with transition metals such as Cu, Ag, Au, and Pt have been a focus of interest for decades, both as markers for these deleterious contaminants, and also in the quest for efficient Si-based light emission. This dissertation presents the results of ultra-high resolution photoluminescence studies of these centres in specially prepared, highly enriched 28-Si samples. The greatly improved spectral resolution due to this enrichment led to the discovery of isotopic fingerprints. These fingerprints have revealed that the detailed constituents of all of the centres previously studied had been identified incorrectly. They also revealed the existence of several different families of impurity complexes containing either four or five atoms chosen from Li, Cu, Ag, Au, and Pt. These centres' constituents have been determined, together with no-phonon transition energies, no-phonon isotope shifts, local vibrational mode energies, and the isotope shifts of the local vibrational mode energies. The data presented here for these centres should prove useful for the currently sought theoretical explanations of their formation, stability, and properties.
This collection presents papers from a symposium on extraction of rare metals as well as rare extraction processing techniques used in metal production. Topics include the extraction and processing of elements such as antimony, arsenic, gold, indium, palladium, platinum, rare earth metals including yttrium and neodymium, titanium, tungsten, and vanadium. Rare processing techniques are covered, including direct extraction processes for rare-earth recovery, biosorption of precious metals, fluorination behavior of uranium and zirconium mixture of fuel debris treatment, and recovery of valuable components of commodity metals such as zinc, nickel, and metals from slag.
Erosive wear is characterized by successive loss of material from the surface due to the continuous impact of solid particles. This type of wear affects numerous industries, such as power generation, mining, and the pneumatic transportation of solids. The worst case scenario normally occurs where there is a combination of both erosion and oxidation, especially at high temperatures. In order to minimize damage caused by erosive wear, many authors propose the use of better bulk materials or surface coatings, and generally cermets are suggested. Various researchers have conducted experiments to study the wear mechanisms occurring in this kind of materials, but most of these experiments do not lead to similar results; in fact, there is no accordance among the authors, and moreover, some wear variables are ignored. In this book, studies undertaken in this field by several investigators have been discussed extensively. At the end of it, table reviews are suggested to summarize the most important mechanisms of the erosive wear in bulk and coating cermets.
This book introduces readers to the fundamental properties and practical applications of shape memory alloys (SMAs) from the perspective of seismic engineering. It objectively discusses the superiority of this novel class of materials, which could potentially overcome the limitations of conventional seismic control technologies. The results, vividly presented in the form of tables and figures, are demonstrated with rigorous experimental verifications, supplemented by comprehensive numerical and analytical investigations. The book allows readers to gain an in-depth understanding of the working mechanisms of various SMA-based structural devices and members, including beam-to-column connections, dampers, and braces, while also providing them with a broader vision of next-generation, performance-based seismic design for novel adaptive structural systems. Helping to bridge the gap between material science and structural engineering, it also sheds light on the potential of commercializing SMA products in the construction industry. The cutting-edge research highlighted here provides technical incentives for design professionals, contractors, and building officials to use high-performance and smart materials in structural design, helping them stay at the forefront of construction technology.
This highly illustrated book presents the essential information and major constituents of laser welding, including laser brazing and laser-arc hybrid welding. Students, engineers, researchers, scientists, specialists, professors, consultants, designers, and executives worldwide will fully grasp the fundamentals, the present state, and the applications of laser welding. Welding phenomena, formation mechanisms and preventive procedures of welding defects, and process monitoring and adaptive control are especially emphasized, because understanding these aspects of laser welding greatly improves the performance of work and research and solves many problems in the field. Finally, the book shows how increasingly widespread use of a variety of materials is bringing major advances to laser welding.
Laser shock processing (LSP) is a new and promising surface treatment technique for improving the fatigue durability, corrosion, wear resistance and other mechanical properties of metals and alloys. During LSP, the generated shock wave can introduce a deep compressive residual stress into the material, due to its high-pressure (GPa-TPa), ultra-fast (several tens nanoseconds), ultra-high strain-rate and high-energy. The overall properties and behavior of metal materials subjected to LSP were significantly improved because a refined surface layer was successfully obtained. Nevertheless, up to now, a clear scenery between micro-structure and macro-property of the refined surface layer, especially formation of sub-micrometer grains from coarse grains during severe plastic deformation, is still pending. Therefore, the basic studies of the underlying mechanism for grain refinement by ultra-high strain-rate presented in this book becomes more and more crucial.
The objective of this book, being the first one on magnesium injection molding, is to treat both the scientific background and the technological aspects as they are understood at present. All aspects of material development, manufacturing and engineering are covered. The book provides a single source of information covering the interdisciplinary field of net shape forming of magnesium alloys. It reflects a unique blend of science and industrial practice.
This book equips a reader with knowledge necessary for critical
analysis of innovations in electric arc furnaces and helps to
select the most effective ones and for their successful
implementation. The book also covers general issues related to
history of development, current state and prospects of steelmaking
in Electric Arc Furnaces. Therefore, it can be useful for everybody
who studies metallurgy, including students of colleges and
universities.
This volume discusses the great potential of metal nanoparticle catalysts for complicated molecular synthesis and reviews the current progress of this field. The development of highly active and stable heterogeneous catalysts is a crucial subject in modern science. However, development of heterogeneous catalysts for fine chemical synthesis has lagged far behind those for bulk chemical process. In recent years metal nanoparticle catalysts have been of great interest in this area due to their unique activity, ease of heterogenization, and robustness. Therefore, metal nanoparticle catalysts are an excellent candidate for the above-mentioned active and robust heterogeneous catalysts and this book provides an overview of this area. The present volume summarizes recent progress on nanoparticle catalysis for various organic transformations from simple redox reactions to complex asymmetric C-C bond forming reactions and also presents seminal studies on new technologies. It comprehensively summarizes advances in metal nanoparticle catalysis across several aspects including reaction manners, mechanistic investigations and new synthetic methodologies to encourage the use of metal nanoparticle catalysts for future organic synthesis. This volume will be of interest to students, researchers and professionals focused on the next-generation of fine chemical synthesis.
Tin (Sn) whiskers are electrically conductive, single crystal eruptions that grow from Sn film surfaces. Their high aspect ratio presents reliability problems for the electronics industry due to bridging and metal arcing, leading to malfunctions and catastrophic failures in many electronic systems (including satellite and defense sectors). Due to legislation in the EU, Japan, and the U.S., mandating a gradual shift from lead (Pb)-based to lead-free solders and board finishes, there has been a reemergence of Sn whiskers. Continuing reports of Sn whisker induced failures coupled with the lack of an industry-accepted understanding of whisker growth and/or test methods to identify whisker prone products has made pure/high Sn substitutes a risky proposition in high reliability systems. This thesis is designed to clarify and control the fundamental mechanisms that govern whisker formation. The research focuses on reproducible "laboratory" created whiskers under a variety of rigorously controlled environmental factors such as film thickness, film stress, substrate material, gas environment, and humidity exposure, which are known to play a significant role in whisker production. The ultimate question of how to impede and/or prevent whisker growth is also addressed and shows that whisker prevention is possible via hard metal capping films, which are impenetrable by whiskers.
Magnetic nanocatalysts are becoming an important tool for greener catalytic processes in chemical transformations in view of the ease of their removal from a reaction medium. This book explores assorted magnetic nanocatalysts, their deployment in synthesis, chemical transformation and their recovery and reuse. Various thematic topics embodied include magnetic nanocatalysts for S-S bond formation, N-heterocycle formation, C-heteroatom bond formation, silica-supported catalysts, multicomponent reactions, including their recyclability; another available volume emphasizes the utility of magnetic nanocatalysts in industrial appliances.
This book explores the application of external physical fields to the solidification processing of metallic alloys. Leading academics from around the world present comprehensive and critical reviews on state-of-the-art research and discuss possible future directions. Major physical fields, including electromagnetic, electric, acoustic, and thermal, are considered. In addition, the most advanced synchrotron X-ray based real-time and in-situ studies and numerical modeling methodologies are reviewed and discussed, with a special emphasis on their applications to the solidification processes. Throughout, all chapters are illustrated with both historical and very recent research cases, including typical examples of in-situ studies, modeling, and simulation. This book contains essential knowledge and information suitable for a wide audience, from undergraduate and postgraduate students to academics, practicing researchers, and engineers in materials, metallurgy, and manufacturing.
Sintering is fast becoming one of the most important industrial
techniques for optimising the capabilities of different materials.
This comprehensive summary of the current state of the art of titanium addresses all aspects of titanium. It is all covered, from the magical metal 's basic characteristics and physical metallurgy to the correlations between processing, microstructure and properties. Richly illustrated with more than 300 figures, this compendium takes a conceptual approach to the physical metallurgy and applications of titanium, making it suitable as a reference and tutorial for materials scientists and engineers.
Steels and computer-based modelling are fast growing fields in materials science as well as structural engineering, demonstrated by the large amount of recent literature. Steels: From Materials Science to Structural Engineering combines steels research and model development, including the application of modelling techniques in steels. The latest research includes structural engineering modelling, and novel, prototype alloy steels such as heat-resistant steel, nitride-strengthened ferritic/martensitic steel and low nickel maraging steel. Researchers studying steels will find the topics vital to their work. Materials experts will be able to learn about steels used in structural engineering as well as modelling and apply this increasingly important technique in their steel materials research and development.
This book explores the interconnections and differentiations between artisanal workshops and alchemical laboratories and between the arts and alchemy from Antiquity to the eighteenth century. In particular, it scrutinizes epistemic exchanges between producers of the arts and alchemists. In the fifteenth and sixteenth centuries the term "laboratorium" uniquely referred to workplaces in which chemical operations were performed: smelting, combustion, distillation, dissolution and precipitation. Artisanal workshops equipped with furnaces and fire in which chemical operations were performed were also known as laboratories. Transmutational alchemy (the transmutation of all base metals into more noble ones, especially gold) was only one aspect of alchemy in the early modern period. The practice of alchemy was also about the chemical production of things--medicines, porcelain, dyes and other products as well as precious metals and about the knowledge of how to produce them. This book uses examples such as the "Uffizi" to discuss how Renaissance courts established spaces where artisanal workshops and laboratories were brought together, thus facilitating the circulation of materials, people and knowledge between the worlds of craft (today s decorative arts) and alchemy. Artisans became involved in alchemical pursuits beyond a shared material culture and some crafts relied on chemical expertise offered by scholars trained as alchemists. Above all, texts and books, products and symbols of scholarly culture played an increasingly important role in artisanal workshops. In these workplaces a sort of hybrid figure was at work. With one foot in artisanal and the other in scholarly culture this hybrid practitioner is impossible to categorize in the mutually exclusive categories of scholar and craftsman. By the seventeenth century the expertise of some glassmakers, silver and goldsmiths and producers of porcelain was just as based in the worlds of alchemical and bookish learning as it was grounded in hands-on work in the laboratory. This book suggests that this shift in workshop culture facilitated the epistemic exchanges between alchemists and producers of the decorative arts." |
![]() ![]() You may like...
Proceedings of the Indian Geotechnical…
Satyajit Patel, C. H. Solanki, …
Hardcover
R9,674
Discovery Miles 96 740
Biomechanical Systems - Techniques and…
Cornelius T. Leondes
Hardcover
|