Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Metals technology / metallurgy
The authors estimate that the cost of corrosion and scaling in the US is about 400 billion dollars per year. Scale, or deposits, that can build up in the wellbore tubulars and other downhole components not only cause considerable damage to the life of the well, but an unnecessary amount of downtime in well completion and production. Infrastructure provides the support for the well's system, and with more oil and gas consumption on the rise and transportation required to feed that demand, all petroleum and environmental engineers must have accurate corrosion and scaling information. This book will teach the engineer how to: [[Enhance the reliability and integrity of corrosion and scale control technologies [[Manage scale deposits, prevent fatigue and ensure equipment integrity [[Learn realistic rules-of-thumb from present-day oilfield case histories [[Understand basic terminology from an extensive glossary
flour, potato starch, cracking catalyst, sand, and gravel, one will probably agree that the first four materials definitely are powders and the last one certainly is not. Whether one would call sand a powder probably depends on the partiele size and on personal Vlews. When the astronaut Neil Armstrong returned to the Earth from his trip on the surface of the Moon, he stated: 'The surface is fine and powdery. I can kick it up loosely with my toe. It does adhere in fine layers like powdered charcoal to the sole and inside of my boots. I only go in a small fraction of an inch, but I can see the footprints of my boots and the treads in the fine sandy partieles. ' These words elearly show that the behaviour of powders de pends on the circumstances. In wh at respects are those on the Moon different from those on the Earth? (1) The gravitational force on the surface of the Moon is only one-sixth of that on the Earth. (2) There is no gas on the Moon. The latter aspect means that any water brought there would evaporate and disappear immediately, hence powders on the Moon will always be perfect1y dry so that cohesion between the separate partieles due to liquid bridges will be zero.
Comprehensive Organometallic Chemistry, Fifteen Volume Set is the market-leading resource covering all areas of this critical sub-discipline of chemistry. Divided into 15 clear sections, it provides expert coverage of the synthesis, structures, bonding and reactivity of all organometallic compounds, including the mechanisms of the reactions. Applications of organometallic chemistry, such as the role of these compounds as reagents and catalysts for organometallic transformations, and their participation in bioorganometallic chemistry, is then covered. This is a vibrant area, as illustrated by the fact that the 2001, 2005 and 2010 Nobel prizes in Chemistry are all concerned with organometallic chemistry. This new edition will therefore again provide an invaluable and efficient learning resource for all researchers and educators looking for up-to-date analysis of a particular aspect of organometallic chemistry.
Metallic (magnetic and non-magnetic) nanocrystalline materials have been known for over ten years but only recent developments in the research into those complex alloys and their metastable amorphous precursors have created a need to summarize the most important accomplishments in the field. This book is a collection of articles on various aspects of metallic nanocrystalline materials, and an attempt to address this above need. The main focus of the papers is on the new issues that emerge in the studies of nanocrystalline materials, and, in particular, on (i) new compositions of the alloys, (ii) properties of conventional nanocrystalline materials, (iii) modeling and simulations, (iv) preparation methods, (v) experimental techniques of measurements, and (vi) different modern applications. Interesting phenomena of the physics of nanocrystalline materials are a consequence of the effects induced by the nanocrystalline structure. They include interface physics, the influence of the grain boundaries, the averaging of magnetic anisotropy by exchange interactions, the decrease in exchange length, and the existence of a minimum two-phase structure at the atomic scale. Attention is also paid to the special character of the local atomic ordering and to the corresponding interatomic bonding as well as to anomalies and particularities of electron density distributions, and to the formation of metastable, nanocrystalline (or quasi-crystalline) phases built from exceptionally small grains with special properties. Another important focus of attention are new classes of materials which are not based on new compositions, but rather on the original and special crystalline structure in thenanoscale.
This collection features papers presented at the 147th Annual Meeting & Exhibition of The Minerals, Metals & Materials Society.
The book emphasizes various aspects of processing secondary sources for recovery of uranium. The field of secondary resource processing is gaining ground over the last few years as it is eco-friendly, economical and in tune with the philosophy of sustainable development. The book is the first one of its type in the area and includes a succint and comprehensive description of related areas of ore mineralogy, resource classification, processing principles involved in uranium solubilisation followed by separation and safety aspects. The clear organisation and the carefully selected figures and tables makes the treatment invaluable for practising engineers, research workers and academic institutions.
There is currently great interest in the process of diffusion bonding. The main thrust has been in the joining of advanced materials such as superplastic alloys, metal matrix composites and ceramics and, most importantly, to introduce the process into mass-production operations. Diffusion bonding has also led to reduced manufacturing costs and weight savings in conventional materials and developments in hot isostatic pressing have allowed greater design flexibility. Since the first conference on Diffusion Bonding, held at Cranfield in 1987, considerable advances have been made and it was therefore considered appropriate to organise the Second International Conference on Diffusion Bonding which was held at Cranfield Institute of Technology on 28 and 29 March 1990. The meeting provided a forum for the presentation and discussion of recent developments in Diffusion Bonding and was divided into four main subject areas: steel bonding and quality control, diffusion bonding of aluminium alloys, bonding of high temperature materials and general applications. This structure is retained in the proceedings. DAVID STEPHENSON vii CONTENTS v Preface ......................... .
This book offers a unique guide to the three-dimensional (3D) printing of metals. It covers various aspects of additive, subtractive, and joining processes used to form three-dimensional parts with applications ranging from prototyping to production. Examining a variety of manufacturing technologies and their ability to produce both prototypes and functional production-quality parts, the individual chapters address metal components and discuss some of the important research challenges associated with the use of these technologies. As well as exploring the latest technologies currently under development, the book features unique sections on electron beam melting technology, material lifting, and the importance this science has in the engineering context. Presenting unique real-life case studies from industry, this book is also the first to offer the perspective of engineers who work in the field of aerospace and transportation systems, and who design components and manufacturing networks. Written by the leading experts in this field at universities and in industry, it provides a comprehensive textbook for students and an invaluable guide for practitioners
An understanding ofthe properties and the handling characteristics of liquids and gases has long been regarded as an essential requirement for most practising engineers. It is therefore not surprising that, over the years, there has been a regular appearance of books dealing with the fundamentals of fluid mechanics, fluid flow, hydraulics and related topics. What is surprising is that there has been no parallel development of the related discipline of Bulk Solids Handling, despite its increasing importance in modern industry across the world. It is only very recently that a structured approach to the teaching, and learning, of the subject has begun to evolve. A reason for the slow emergence of Bulk Solids Handling as an accepted topic of study in academic courses on mechanical, agricultural, chemical, mining and civil engineering is perhaps that the practice is so often taken for granted. Certainly the variety of materials being handled in bulk is almost endless, ranging in size from fine dust to rocks, in value from refuse to gold, and in temperature from deep-frozen peas to near-molten metal.
This book examines recent developments in inert anodes for aluminum electrolysis. It describes the composition and application of the most promising metal ceramic inert anode materials and nickel-oxide nanotechnology in the aluminum industry. The volume addresses concepts, analysis, properties, conductivity and corrosion, microstructure and microanalysis, and machinability of inert anodes for aluminum electrolysis. The book will be valuable to the aluminum industry, where inert anodes are having a profound impact in creating more energy saving, greener, and more functional aluminum materials in high-strength and high-temperature applications.
Significant experimental work is devoted to the preparation of one and zero dimensional semiconductor structures in view of future electronic and optical devices which involve quantum effects. The aim is good control in the realisation of nanometer structures both in vertical and lateral direction. Conventional processing techniques based on lithography face inherent problems such as limited resolution and surface defects caused by reactive ion etching. During the last few years several research groups started working on direct syntheses of semiconductor nanostructures by combining epitaxial growth techniques such as molecular beam epitaxy and chemical vapour deposition with pre patterning of the substrate wafers. Another idea is based on island formation in strained layer heteroepitaxy. Zero and one dimensional structures with dimensions down to a few atomic distances have been realised this way. An important point is that the size of the quantum structures is controlled within the epitaxial deposition in a self-adjusting process. The main subjects of the book are: Theoretical aspects of epitaxial growth, selfassembling nanostructures and cluster formation, epitaxial growth in tilted and non-(001) surfaces, cleaved edge overgrowth, nanostructure growth on patterned silicon substrates, nanostructures prepared by selective area epitaxy or growth on patterned substrates, in-situ etching and device applications based on epitaxial regrowth on patterned substrates. The experimental work mainly concentrated on GaAs/A1GaAs, GaAs/InGaAs, InGaP/InP and Si/SiGe based semiconductor heterostructures. Growth related problems received special attention. The different concepts for preparation of low dimensional structures are presented to allow direct comparison and to identify new concepts for future research work.
teacher Professor Ernst-Joachim Ivers to whom I still owe many insights 20 years after the end of his working life. This English edition is not an unedited translation of the German edition of 1990. The text has been substantially revised in some chapters, taking into account the literature published in the mean time. I wish to thank Dr.-Ing. H. Finken, Freiberg, who has prepared the translation from German into English with deep scientific understanding and in close contact with the author. I also wish to express my gratitude to Chapman & Hall for their support to this project without which the English edition could not have been published. Dr.-Ing. habil. C. Bernhardt Freiberg 1 Position, tasks and structure of particle size analysis Today the concept of particle size analysis is that of a special field of particle measurement technology, which in turn is part of particulate technology. This classification has developed over the last 20 years; it is the result of a scientific integration process taking place in many industrialized countries of the world. In recent years, the meaning and mutual connection of the related concepts as well as the tasks of the scientific disciplines designated by them have been the subject of intensive discussion which, however, has not led to a generally accepted terminology.
This thesis consists of an in-depth study of investigating microstructure-property relationships in bulk metallic glasses using a novel quantitative approach by which influence of the second phase features on mechanical properties can be independently and systematically analyzed. The author evaluates and optimizes the elastic and plastic deformation, as well as the overall toughness of cellular honeycombs under in-plane compression and porous heterostructures under uniaxial tension. The study reveals three major deformation zones in cellular metallic glass structures, where deformation changes from collective buckling showing non-linear elasticity to localized failure exhibiting a brittle-like deformation, and finally to global sudden failure with negligible plasticity as the length to thickness ratio of the ligaments increases. The author found that spacing and size of the pores, the pore configuration within the matrix, and the overall width of the sample determines the extent of deformation, where the optimized values are attained for pore diameter to spacing ratio of one with AB type pore stacking.
In recent years the importance of extruded alloys has increased due to the decline in copper extrusion, increased use in structural applications, environmental impact and reduced energy consumption. There have also been huge technical advances. This text provides comprehensive coverage of the metallurgical, mathematical and practical features of the process.
100 years after the first observation of ripening by Ostwald and 40 years after the first publication of a theory describing this process, this monograph presents, in a self-consistent and comprehensive manner, all the bits and pieces of coarsening theories so that the main issues and the underlying mathematics of self-similar coarsening of dispersed systems can be understood. It contains all of the background material necessary to understand growth and coarsening of spherical particles or droplets in a liquid or solid matrix. Some basic knowledge of heat and mass transfer, thermodynamics and differential equations would be helpful, but not necessary, as all the concepts required are introduced. The text is suitable for advanced undergraduate and graduate students as well as for researchers. Rather than giving a complete survey of the field, it presents a careful derivation of the existing results and places them into some perspective.
This book deals with the chemistry of polymeric metal chelates. The main results and the production and chemical structure of polymers with chelate units as well as the specificity of metal complex binding of different structure are presented here. This book also reveals the transformations which components undergo in the course of chelation. Special attention is paid not only to synthetic but also to natural (including living) systems. The usage of polymeric metal chelates and their development are examined. The related research was performed for chelates with chain structure. This book is useful to researchers being active in synthesis and design of macromolecular metal chelates
Emerging Fields in Sol-gel Science and Technology contains selected papers from the symposium on "Sol-Gel and Vitreous Materials and Applications" held during the International Materials Research Congress in Cancun, Mexico in August 2002. One hundred and twenty researchers representing 10 countries attended this symposium. Some of the subjects covered in this symposium include 1.) synthesis of new materials endowed with outstanding and non-conventional optical, magnetic, electrical, thermal, catalytic, and mechanical properties; 2.) study of the sorption properties of model porous materials in order to test the validity of previous and recent theories; 3.) theoretical studies related to density functional theory, fractal and scaling law approaches, 4.) synthesis of biomaterials for use in medicine and pollution control; 5.) application of sol-gel colloids in the fine-chemistry industry in products such as fragrances and pharmaceuticals; 6.) development of special vitreous materials; 7.) implementation of inorganic thin films, and 8.) synthesis of materials for energy saving. "
For a long time the die cast industry has used trial and error as a development method, resulting in tremendous growth in the utilization of available CFD (computational fluid dynamics) software. This book will refresh knowledge of the governing laws of the fluid dymanics that have an effect on die cast die and die cast process design.
|
You may like...
The Value of Science in the Smithy and…
William Hutton Cathcart, John Edward 1851- Stead
Hardcover
R793
Discovery Miles 7 930
Materials Science and Engineering…
Information Reso Management Association
Hardcover
R9,972
Discovery Miles 99 720
Recent Advancements in the Metallurgical…
Uday Basheer Al-Naib, Dhanasekaran Vikraman, …
Hardcover
Magnesium Alloys Structure and…
Tomasz Tanski, Pawel Jarka
Hardcover
Patents for Invention - Abridgements of…
Great Britain Patent Office
Paperback
R727
Discovery Miles 7 270
Patents for Inventions - Abridgments of…
Great Britain Patent Office
Paperback
R496
Discovery Miles 4 960
|