![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Metals technology / metallurgy
The use of adhesives has many advantages over other methods of fastening. Presenting a smooth exterior, spreading of the load and ease of joining thin or dissimilar materials are all reasons why the use of adhesives for bonding structures is steadily growing and finding new applications. Structural Adhesive Joints in Engineering is a concise guide to adhesive joints within structures, especially those capable of bearing high loads. The book covers all aspects of design, materials selection and testing, including the physical properties and cure-chemistry of structural adhesives and how to select adhesives for particular applications; surface preparation by physical or chemical methods (with or without the use of primers and coupling agents); and new sections on surface analysis and water durability. There is also a detailed guide to stresses in adhesive joints and joint design. Thoroughly revised and updated since the first edition, the Second Edition contains new sections on recent topics of importance, such as water durability. This book contains everyhting an engineer needs to know to be able to design and produce adhesively bonded joints that are required to carry significant loads. Advantages and disadvantages are given, together with a sufficient description of the necessary mechanics and chemistry involved to enable the designer to make a sound engineering judgement in each particular case.
The history of cut nail manufacturing shows how the interaction of technology and markets shaped the structure, organizational patterns, management systems, and individual production units of a single industry--a classic example of the American enterprise system at work. Reliance on wood construction created an expanding market for cut nails and exerted considerable pressure for high volume and low prices. Industry responded to this challenge, introducing and perfecting machine-made nails. As this competitive advantage began to decline the industry was again transformed by management changes and the implementation of cost accounting. Loveday utilizes the records of four dominant companies in the industry and journalistic accounts to document the complex patterns of growth and decline, innovation and obsolescence in the cut nail industry.
This collection presents the papers from a symposium on extraction of rare metals as well as rare extraction processing techniques used in metal production. Paper topics include the extraction and processing of elements like antimony, arsenic, calcium, chromium, hafnium, gold, indium, lithium, molybdenum, niobium, rare earth metals, rhenium, scandium, selenium, silver, strontium, tantalum, tellurium, tin, tungsten, vanadium, and zirconium. Rare processing techniques presented include bio leaching, molecular recognition technology, recovery of valuable components of commodity metals such as magnesium from laterite process wastes, titanium from ilmenites, and rare metals from wastes such as phosphors and LCD monitors.
This is a book about mechanical failure. The author, Bob Ross, has been working at the forefront of failure investigation and materials problem solving for many years. He has established an international reputation for being able to solve mechanical problems very rapidly and has produced reports which are clear and concise and which have a firm, meaningful conclusion.
This book explores the recent developments, perspectives on future research, and pertinent data from academia, industry, and government research laboratory to discuss fundamental mechanisms as well as processing and applications of advanced metallic and ceramic thin film and coating materials for energy and environmental applications. It is a platform to disseminate the latest research progress related to processing, characterization, and modelling. The authors address both thermal barrier and environmental coatings; magnetic and thermoelectric materials; and solar cell and solid oxide fuel cell materials. It is appropriate supplementary reading for students and primary reading for researchers in materials science and engineering.
All significant studies agree that aqueous corrosion continues to cost nations dearly in almost every area of technological endeavour. Over the past ten years, microcomputers have facilitated an explosion in the power of modelling as a technique in science and engineering. In corrosion they have enabled better understanding of polarization curves, they have transformed the scope of electrochemical impedance measurements and they have placed a large range of electrochemistry at the fingertips of the corrosion scientist. This book focuses on the models, rather than the computing, which have been made possible during the past decade. Aimed at all those with an interest in corrosion and its control, the book draws together the range of new modelling strands, suggests new avenues of approach and generates further momentum for improvements to corrosion management, whether by increased understanding of atomistic processes or by control of large plant.
Machining is one of the most important manufacturing processes. Parts manufactured by other processes often require further operations before the product is ready for application. "Machining: Fundamentals and Recent Advances" is divided into two parts. Part I explains the fundamentals of machining, with special emphasis on three important aspects: mechanics of machining, tools, and work-piece integrity. Part II is dedicated to recent advances in machining, including: machining of hard materials, machining of metal matrix composites, drilling polymeric matrix composites, ecological machining (minimal quantity of lubrication), high-speed machining (sculptured surfaces), grinding technology and new grinding wheels, micro- and nano-machining, non-traditional machining processes, and intelligent machining (computational methods and optimization). Advanced students, researchers and professionals interested or involved in modern manufacturing engineering will find the book a useful reference.
Handbook of Science and Engineering of Green Corrosion Inhibitors: Modern Theory, Fundamentals and Practical Applications presents developments in green corrosion inhibitors and current applications. The book provides an overview of green corrosion inhibitors such as plant extracts, chemical medicines, natural polymers, synthetic green compounds, carbohydrates, amino acids and oleochemicals that can cost-effectively minimize corrosive damage. The book handles several compounds used as anticorrosive materials for different metals and alloys in a versatile corrosive environment. Sections address the fundamental characteristics of green corrosion inhibition and deal with the economic impact of corrosion and forms of corrosion, while also assessing and classifying corrosion inhibitors. The book covers a broad range of applications in green corrosion inhibition and concludes with new emerging trends in corrosion protection such as high temperature corrosion and its protection and nanomaterials as corrosion inhibitors.
This book provides comprehensive coverage of the current state-of-the-art in soft magnetic materials and related applications, with particular focus on amorphous and nanocrystalline magnetic wires and ribbons and sensor applications. Expert chapters cover preparation, processing, tuning of magnetic properties, modeling, and applications. Cost-effective soft magnetic materials are required in a range of industrial sectors, such as magnetic sensors and actuators, microelectronics, cell phones, security, automobiles, medicine, health monitoring, aerospace, informatics, and electrical engineering. This book presents both fundamentals and applications to enable academic and industry researchers to pursue further developments of these key materials. This highly interdisciplinary volume represents essential reading for researchers in materials science, magnetism, electrodynamics, and modeling who are interested in working with soft magnets.
This fifth edition of the highly regarded family of titles that
first published in 1965 is now a three-volume set and over 3,000
pages. All chapters have been revised and expanded, either by the
fourth edition authors alone or jointly with new co-authors.
Chapters have been added onthe physical metallurgy of light alloys,
the physical metallurgy of titanium alloys, atom probe field ion
microscopy, computational metallurgy, and orientational imaging
microscopy. The books incorporate the latest experimental research
results and theoretical insights. Several thousand citations to the
research and review literature are included.
This collection encompasses the following four areas: (1) Solidification processing: theoretical and experimental investigations of solidification processes including castings solidification, directional solidification of alloys, electromagnetic stirring, ultrasonic cavitation, mechanical vibration, active cooling and heating, powder bed-electron beam melting additive manufacturing, etc. for processing of metals, polymers and composite materials; (2) Microstructure Evolution: theoretical and experimental studies related to microstructure evolution of materials including prediction of solidification-related defects and particle pushing/engulfment aspects; (3) Novel Casting and Molding Processes: modeling and experimental aspects including high pressure die casting, permanent casting, centrifugal casting, low pressure casting, 3D silica sand mold printing, etc.; and (4) Cast Iron: all aspects related to cast iron characterization, computational and analytical modeling, and processing.
Hausner's handbook covers the entire field of powder metallurgy with its various branches and refinements, while at the same time remaining within the bounds of manageable size and readability. It is a concise presentation concentrating on graphical presentations and tables to explain basic relationships between the principles and technology of powder metallurgy. This book is a valuable guide not only for students and teachers but also for the practical powder metallurgists involved in research, development and production of P/M parts and compounds.
The book focuses on the thermal transformations of various types of metal chelates, e.g. low molecular weight and polymeric metal chelates, coordination polymers and metal-organic frameworks. It analyzes the major advances and the problems in the preparation of metal oxide materials, mixed-oxide nanocomposites, carbon materials and polymer derived non-oxide nanocomposites by the thermolysis of different metal chelates. It also highlights the influence of the spatial and electronic structure of metal chelates on the mechanism and kinetics of their thermal transformations, and discusses important issues like conjugate thermolysis and computer modelling of the thermolysis process. This book is useful for researchers experienced in thermolysis as well as for young scientists interested in this area of science.
This collection presents papers from a symposium on extraction of rare metals from primary and secondary materials and residues as well as rare extraction processing techniques used in metal production. Authors cover the extraction of less common or minor metals including elements such as antimony, bismuth, barium, beryllium, boron, calcium, chromium, gallium, germanium, hafnium, indium, manganese, molybdenum, platinum group metals, rare earth metals, rhenium, scandium, selenium, sodium, strontium, tantalum, tellurium, and tungsten. Contributions also discuss rare metals of low-tonnage sales compared to high-tonnage metals (iron, copper, nickel, lead, tin, zinc, or light metals such as aluminum, magnesium, or titanium and electronic metalloid silicon). Authors also cover biometallurgy, hydrometallurgy, and electrometallurgy while novel high-temperature processes such as microwave heating, solar-thermal reaction synthesis, and cold crucible synthesis of rare metals are addressed. Also included in this collection is the design of extraction equipment used in these processes from suppliers as well as laboratory and pilot plant studies.
Materials for springs is basically intended for engineers related to spring materials and technologies who graduated from metallurgical or mechanical engineering courses in technical high school, or in other higher engineering schools, as well as those who are related to the purchase or sales of spring materials. The first chapter introduces into the fundamental selection processes of spring materials including the information sources on materials database. It is followed by the basic mechanisms and theories of spring failures such as fatigue fracture, creep/stress relaxation and stress corrosion cracking of metallic materials. The focuses of the second chapter is put on ferrous and non-ferrous metallic materials, including some materials developed in these two decades, such as high strength automobile suspension steels etc. In the third and fourth chapters, polymer materials, FRP (Fiber Reinforced Plastics), ceramics and C/C composite materials are the main subject respectively. In the fifth chapter, lists of Japanese spring material manufacturers and their material grades being produced, comparisons of spring materials in the Japanese Industrial Standards with some other foreign standards, etc, are summarized.
Exploring such topics as materials, metals, bonding techniques, etching procedures and fabrication techniques, this book gives examples which should be comprehended by both technical and non-technical readers.
This book presents the findings of research projects from the Transregional Collaborative Research Centre 73. These proceedings are the result of years of research into sheet-bulk metal forming. The book discusses the challenges posed by simulating sheet-bulk metal forming. It takes into account the different phenomena characteristic to both sheet and bulk forming fields, and explores the demands this makes on modelling the processes. It then summarizes the research, and presents from a practitioner's point of view. This means the book is of interest to and helps both academics and industrial engineers within the field of sheet-bulk metal forming.
This book outlines the physical and chemical foundations of high-temperature processes for producing silicon, manganese and chromium ferroalloys, alloys of molybdenum, vanadium, titanium, alkaline earth and rare earth metals, niobium, zirconium, aluminum, boron, nickel, cobalt, phosphorus, selenium and tellurium, iron-carbon alloys by carbon, silicone and aluminothermic methods. The chapters introduce the industrial production technologies of these groups of ferroalloys, the characteristics of charge materials, and the technological parameters of the melting processes. A description of ferroalloy furnaces is given in detail. Topics such as waste recycling, fines agglomeration technologies, and environmental issues are considered.
Metal-Organic Frameworks for Chemical Reactions: From Organic Transformations to Energy Applications brings together the latest information on MOFs materials, covering recent technology in the field of manufacturing and design. The book covers different aspects of reactions from energy storage and catalysts, including preparation, design and characterization techniques of MOFs material and applications. This comprehensive resource is ideal for researchers and advanced students studying metal-organic frameworks in academia and industry. Metal-organic frameworks (MOFs) are nanoporous polymers made up of inorganic metal focuses connected by natural ligands. These entities have become a hot area of research because of their exceptional physical and chemical properties that make them useful in di?erent ?elds, including medicine, energy and the environment. Since combination conditions strongly a?ect the properties of these compounds, it is especially important to choose an appropriate synthetic technique that produces a product with homogenous morphology, small size dispersion, and high thermal stability.
Shape Memory Alloy Engineering: For Aerospace, Structural and Biomedical Applications, Second Edition embraces new advancements in materials, systems and applications introduced since the first edition. Readers will gain an understanding of the intrinsic properties of SMAs and their characteristic state diagrams. Sections address modeling and design process aspects, explore recent applications, and discuss research activities aimed at making new devices for innovative implementations. The book discusses both the potential of these fascinating materials, their limitations in everyday life, and tactics on how to overcome some limitations in order to achieve proper design of useful SMA mechanisms.
One of the key aspects of this volume is to cut across the traditional taxonomy of disciplines in the study of alloys. Hence there has been a deliberate attempt to integrate the different approaches taken towards alloys as a class of materials in different fields, ranging from geology to metallurgical engineering. The emphasis of this book is to highlight commonalities between different fields with respect to how alloys are studied. The topics in this book fall into several themes, which suggest a number of different classification schemes. We have chosen a scheme that classifies the papers in the volume into the categories Microstructural Considerations, Ordering, Kinetics and Diffusion, Magnetic Considerations and Elastic Considerations. The book has juxtaposed apparently disparate approaches to similar physical processes, in the hope of revealing a more dynamic character of the processes under consideration. This monograph will invigorate new kinds of discussion and reveal challenges and new avenues to the description and prediction of properties of materials in the solid state and the conditions that produce them.
The analysis, development, and/or operation of high temperature processes that involve the production of ferrous and nonferrous metals, alloys, and refractory and ceramic materials are covered in the book. The innovative methods for achieving impurity segregation and removal, by-product recovery, waste minimization, and/or energy efficiency are also involved. Eight themes are presented: 1: High Efficiency New Metallurgical Process and Technology 2: Fundamental Research of Metallurgical Process 3: Alloys and Materials Preparation 4: Direct Reduction and Smelting Reduction 5: Coking, New Energy and Environment 6: Utilization of Solid Slag/Wastes and Complex Ores 7: Characterization of High Temperature Metallurgical Process
This book of recommendations presents an overview of High Frequency Mechanical Impact (HFMI) techniques existing today in the market and their proper procedures, quality assurance measures and documentation. Due to differences in HFMI tools and the wide variety of potential applications, certain details of proper treatments and quantitative quality control measures are presented generally. An example of procedure specification as a quality assurance measure is given in the Appendix. Moreover, the book presents procedures for the fatigue life assessment of HFMI-improved welded joints based on nominal stress, structural hot spot stress and effective notch stress. It also considers the extra benefit that has been experimentally observed for HFMI-treated high-strength steels. The recommendations offer proposals on the effect of loading conditions like high mean stress fatigue cycles, variable amplitude loading and large amplitude/low cycle fatigue cycles. Special considerations for low stress concentration welded joints are also given. In order to demonstrate the use of the guideline, the book provides several fatigue assessment examples.
Some 20 years ago, I was privileged to share in writing a book on the descriptive chemistry of the 4d, 5d, 4f and 5f metals that included these eight elements within its compass (S.A. Cotton and F.A. Hart, The Heavy Transition Elements, Macmillan, 1975). This volume shares the same aim of covering the descriptive chemistry of silver, gold and the six platinum metals in some detail at a level suitable for advanced undergraduate and postgraduate study. It does not attempt to be a comprehensive treatise on the chemistry of these metals. It attempts to fill a slot between the general text and the in-depth review or monograph. The organometallic chemistry is confined to a-bonded com pounds in normal oxidation states; compounds with IT-bonding ligands are generally excluded. Their inclusion would have increased the length of the book considerably and, moreover, their recent chemistry has been extensively and expertly reviewed in the new Comprehensive Organometallic Chemistry, II, eds G. Wilkinson, F.G.A. Stone and E.W. Abel, Pergamon, Oxford, 1995." |
![]() ![]() You may like...
Risk Savvy - How to Make Good Decisions
Gerd Gigerenzer
Paperback
![]()
Advances in MEMS and Microfluidic…
Rajeev Kumar Singh, Rakesh Kumar Phanden, …
Hardcover
R6,425
Discovery Miles 64 250
Current Topics in Language, Volume 68
Kara D. Federmeier, Duane Watson
Hardcover
R3,309
Discovery Miles 33 090
Privacy and Identity Management for Life…
Michele Bezzi, Penny Duquenoy, …
Hardcover
R1,557
Discovery Miles 15 570
|