![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Metals technology / metallurgy
Magnesium is one of the most abundant minerals in seawater. Extracting magnesium from seawater could reduce cost of this mineral, resulting in positive implications for industries that use it. This book addresses mineral process engineering with emphasis on magnesium and provides practicing engineers and students with comprehensive knowledge on magnesium and how it is extracted from seawater and magnesium ores. It takes a chemical engineering approach as separation of magnesium from seawater involves the application of the powerful science of chemistry and transport phenomena principles. This monograph discusses magnesium resources and occurrence, includes an exploration study on deriving magnesium and mineral salts from seawater, and features coverage of magnesium chloride. It also covers commercial methods for magnesium production as an end product, current and prospective applications in the energy domain, and offers an account of the use of magnesium to store hydrogen in the form of magnesium hydride.
Incremental Sheet Forming (ISF) exempts use of dies and reduces cost for manufacturing complex parts. Sheet metal forming is used for producing high-quality components in automotive, aerospace, and medical industries. This book covers the benefits of this new technology, including the process parameters along with various techniques. Each variant of this novel process is discussed along with the requirements of machinery and hardware. In addition, appropriate guidelines are also suggested regarding the relationship between process parameters and aspects of ISF process in order to ensure the applicability of the process on the industrial scale. This book will be a useful asset for researchers, engineers in manufacturing industries, and postgraduate level courses.
Finite Element Analysis of Weld Thermal Cycles Using ANSYS aims at educating a young researcher on the transient analysis of welding thermal cycles using ANSYS. It essentially deals with the methods of calculation of the arc heat in a welded component when the analysis is simplified into either a cross sectional analysis or an in-plane analysis. The book covers five different cases involving different welding processes, component geometry, size of the element and dissimilar material properties. A detailed step by step calculation is presented followed by APDL program listing and output charts from ANSYS. Features: Provides useful background information on welding processes, thermal cycles and finite element method Presents calculation procedure for determining the arc heat input in a cross sectional analysis and an in-plane analysis Enables visualization of the arc heat in a FEM model for various positions of the arc Discusses analysis of advanced cases like dissimilar welding and circumferential welding Includes step by step procedure for running the analysis with typical input APDL program listing and output charts from ANSYS.
Provides an introduction to fundamental mixer types, as well as variations on the classical mixer designs.
Amorphous-nanocrystalline alloys are a relatively new class of materials born from the rapid development of new technologies and different methods of producing amorphous and nanocrystalline powders and films, compacting, melt quenching, megaplastic deformation, implantation, laser, plasma, and other high-energy methods. This book considers methods of producing these materials (melt quenching, controlled crystallization, deformation effect, and pulse treatments (photon, laser and ultrasound), spraying thin films, and ion implantation). Theoretical and experimental studies describe plastic deformation mechanisms and physico-mechanical properties. Practical applications are also presented.
This reference is dedicated to the problem of time-temperature stability of amorphous (non-crystalline) metal alloys with strongly nonequilibrium structure and unique physical and mechanical properties that are obtained by quenching from the melt at a rate that exceeds one millions of degrees c.o.s. second. As a stability test, the behavior of the plasticity of amorphous alloys is studied. The book examines the fundamental characteristics of amorphous alloys, the basic laws of structural relaxation, generalized information about the phenomenon of the ductile-brittle transition (temper embrittlement), the development of physically justified methods of predicting the stability of the properties, and provides information about the attempts of controlling the structure for the purpose of suppressing or deceleration of the ductile-brittle transition and, as a consequence, increasing the temperature and temporal stability of the amorphous state.
Plastic Deformation of Nanostructured Materials offers comprehensive analysis on the most important data and results in the field of materials strength and mechanics. This reference systematically examines the special features of the mechanical behavior and corresponding structural mechanisms of crystal structure defects with grain sizes that range from meso- to micro- levels.
Magnesium Alloys as Degradable Biomaterials provides a comprehensive review of the biomedical applications of biodegradable magnesium and its alloys. Magnesium has seen increasing use in orthopedic and cardiovascular applications over the last decade, particularly for coronary stents and bone implants. The book discusses the basic concepts of biodegradation mechanisms as well as strategies to control biodegradation mode and rate, microstructure, mechanical properties, corrosion resistance to body fluid, and in vitro and in vivo biocompatibility. The recently developed representative magnesium alloy systems-such as Mg-Ca, Mg-Zn, Mg-Sr, Mg-Ag, Mg-Li, and Mg-RE-are reviewed and their special properties illustrated. Also discussed are the biodegradable magnesium alloys/aqueous solution interface theoretical model and potential application prototypes, such as for cardiology and orthopedic surgery products. Challenges of transitioning biodegradable magnesium alloys from raw materials to semi-products to final medical devices are covered along with main findings of worldwide experimental studies. An ideal reference book for researchers in the area of biodegradable metals, it presents the state of the art of magnesium alloys designed for biomedical applications.
Metallic Materials compares and contrasts the corrosion resistance of wrought stainless steel and high nickel alloys and explores recent advances in the production of exotic metals. It emphasizes the physical and mechanical properties, corrosion resistance, workability and cost of various metals. The authors analyze the physical and mechanical properties of metals, define relevant terminology, describe the various forms of corrosion to which metals may be susceptible, examine wrought ferrous metals, alloys, and typical applications, and cover wrought nickel and high nickel alloys. This is a handy reference for the busy engineer and student in corrosion, materials, chemical, mechanical, civil, design, process, metallurgical, manufacturing, and industrial engineering.
Creep and Creep Rupture of Metals is devoted to the fundamental description of the phenomenon of creep which occurs widely in high-temperature deformation of metals. Special attention is paid to the analysis of long-term strength, which characterizes the stress at which the metal does not fail after a predetermined time. The author details experimental and theoretical results obtained by Soviet and Russian scientists that are absent in currently available publications and demonstrates analytical methods and approaches to achieve long term strength in Metals.
This book covers recent advancements in the field of polymer science and technology. Frontiers areas, such as polymers based on bio-sources, polymer based ferroelectrics, polymer nanocomposites for capacitors, food packaging and electronic packaging, piezoelectric sensors, polymers from renewable resources, superhydrophobic materials and electrospinning are topics of discussion. The contributors to this book are expert researchers from various academic institutes and industries from around the world.
Despite significant advances in technology and equipment for rolled steel, the computerization of production processes and the steady increase in production of sheet steel, recent scientific and technological achievements have not been compiled in the special literature and revealed to a wide range of specialists. This book details new approaches, computational techniques, and reliable calculation methods of leaf-rolling modes, forecasting and optimization of the technologies, increasing productivity of the mill and a radical improvement in the quality of steel products.
Computer-aided design (CAD) technology is essential for modern design and manufacture in the workshop. With software more practical, affordable and accessible than ever, there has never been a better time to learn how to get the most out of CAD. Whether you are new to using CAD or ready to try more advanced software, this practical guide gives a thorough introduction to the technology and how to greatly enhance design and manufacture in the workshop. Topics covered include: techniques for designing and making artefacts in the workshop (not restricted to any specific CAD software package); guidance on software selection and general functionality; an overview of the conventions of technical drawing and, finally, case studies demonstrating the application of different CAD techniques for a range of projects.
A Complete Reference Covering the Latest Technology in Metal Cutting Tools, Processes, and Equipment Metal Cutting Theory and Practice, Third Edition shapes the future of material removal in new and lasting ways. Centered on metallic work materials and traditional chip-forming cutting methods, the book provides a physical understanding of conventional and high-speed machining processes applied to metallic work pieces, and serves as a basis for effective process design and troubleshooting. This latest edition of a well-known reference highlights recent developments, covers the latest research results, and reflects current areas of emphasis in industrial practice. Based on the authors' extensive automotive production experience, it covers several structural changes, and includes an extensive review of computer aided engineering (CAE) methods for process analysis and design. Providing updated material throughout, it offers insight and understanding to engineers looking to design, operate, troubleshoot, and improve high quality, cost effective metal cutting operations. The book contains extensive up-to-date references to both scientific and trade literature, and provides a description of error mapping and compensation strategies for CNC machines based on recently issued international standards, and includes chapters on cutting fluids and gear machining. The authors also offer updated information on tooling grades and practices for machining compacted graphite iron, nickel alloys, and other hard-to-machine materials, as well as a full description of minimum quantity lubrication systems, tooling, and processing practices. In addition, updated topics include machine tool types and structures, cutting tool materials and coatings, cutting mechanics and temperatures, process simulation and analysis, and tool wear from both chemical and mechanical viewpoints. Comprised of 17 chapt
Biomass and Carbon Fuels in Metallurgy presents contemporary and new insights into the use of carbonaceous (Biomass) fuels in the metallurgical sector. The authors describe application of these fuels in different technological processes to produce pig iron, steel and ferroalloys. Emphasis is placed on biomass and its metallurgical utilization. Coverage includes the specification of fuels, their classification and the characteristics of their basic properties. The use of carbonaceous fuels in the production of various kinds of agglomerates (ferriferous, manganese and metalized) is also covered. Key Features: Provides a comprehensive view of carbonaceous fuels in various metallurgy processes Details experiments conducted on the use of traditional and alternative (biomass) carbonaceous fuels for the production of agglomerates. Demonstrates that the energy potential of biomass can also be successfully used in pyrometallurgical processes Describes applications of biomass-based fuels in different technological processes for the production of pig iron, steel and ferroalloys. Coverage includes the specification of fuels, their classification and the characteristics of their basic properties.
This book summarizes basic lubrication theory, its types and properties, and covers some specific applications of lubrication: diesel and petrol engines, hydraulics, compressors, machine tools and cutting oils. It then focuses on the storage and handling of lubricants, and on lubrication planning.
Thin-walled metal shell structures are highly efficient in their use of material, but they are particularly sensitive to failure by buckiling. Many different forms of buckling can occur for different geometries and different loading conditions. Because this field of knowledge is both complex and industrially important, it is of great interest and concern in a wide range of industries. This book presents a compilation and synthesis of a wealth of research, experience and knowledge of the subject. Information that was previously widely scattered throughout the literature is assembled in a concise and convenient form that is easy to understand, and state-of-the-art research findings are thoroughly examined. This book is useful for those involved in the structural design of silos, tanks, pipelines, biodigestors, chimneys, towers, offshore platforms, aircraft and spacecraft. Buckling of Thin Metal Shells is essential reading for designers, researchers and code writers involved with thin-walled metal shell structures.
Wire rope is used in countless applications ranging from braces for teeth to superconducting cables. Many power lines are strands of aluminum wires twisted around a steel center wire; the most spectacular bridges are suspended from wire cables; wire rope is used to lower workers and equipment as deep as three miles in the gold mines of South Africa; and wire rope finds many applications in biomechanics.
Aluminum-Lithium Alloys: Process Metallurgy, Physical Metallurgy, and Welding provides theoretical foundations of the technological processes for melting, casting, forming, heat treatment, and welding of Al-Li alloys. It contains a critical survey of the research in the field and presents data on commercial Al-Li alloys, their phase composition, microstructure, and heat treatment of the ingots, sheets, forgings, and welds of Al-Li alloys. It details oxidation kinetics, protective alloying, hydrogen in Al-Li alloys, and crack susceptibility. It also discusses grain structure and solidification, as well as structural and mechanical properties. The book is illustrated with examples of Al-Li alloy applications in aircraft structures. Based on the vast experience of the coauthors, the book presents recommendations on solving practical problems involved with melting and casting ingots, welding of Al-Li alloys, and producing massive stampings for welded products. Provides comprehensive coverage of Al-Li alloys, not available in any single source. Presents research that is at the basis of the production technology for of ingots and products made of Al-Li alloys. Combines basic science with applied research, including upscaling and industrial implementation. Covers welding of Al-Li alloys in detail. Discusses gas and alkali-earth impurities in Al-Li alloys. Describes technological recommendations on casting and deformation of Al-Li alloys.
Metal Cutting Mechanics outlines the fundamentals of metal cutting analysis, reducing the extent of empirical approaches to the problems as well as bridging the gap between design and manufacture. The author distinguishes his work from other works through these aspects: considering the system engineering of the cutting process identifying the singularity of the cutting process among other closely related manufacturing processes by chip formation, caused by bending and shear stresses in the deformation zone suggesting a distinctive way toward predictability of the metal cutting process devoting special attention to experimental methodology Metal Cutting Mechanics provides an exceptional balance between general reading and research analysis, presenting industrial and academic requirements in terms of basic scientific factors as well as application potential.
Using a mold for centrifugal casting as an example, discusses the types of apparatus and tools that are commonly affected by thermal fatigue during industrial processes, and examines the various factors that lead to such failure. Focuses on the performance of particular industrial components under d
Thin films of conducting materials, such as metals, alloys and semiconductors are currently in use in many areas of science and technology, particularly in modern integrated circuit microelectronics that require high quality thin films for the manufacture of connection layers, resistors and ohmic contacts. These conducting films are also important for fundamental investigations in physics, radio-physics and physical chemistry. Physical Properties of Thin Metal Films provides a clear presentation of the complex physical properties particular to thin conducting films and includes the necessary theory, confirming experiments and applications. The volume will be an invaluable reference for graduates, engineers and scientists working in the electronics industry and fields of pure and applied science.
This work details minor, trace and ultratrace methods; addresses the essential stages that precede measurement; and highlights the measurement systems most likey to be used by the pragmatic analyst. It features key material on inclusion and phase isolation. The book is designed to provide useful maps and signposts for metals analysts who must verify that stringent trace level compositional specifications have been met. |
![]() ![]() You may like...
Metal Oxides for Optoelectronics and…
Suresh Sagadevan, Jiban Podder, …
Paperback
R4,838
Discovery Miles 48 380
The Welding Engineer's Guide to Fracture…
Philippa Moore, Geoff Booth
Hardcover
R3,896
Discovery Miles 38 960
Fluoropolymer Applications in the…
Sina Ebnesajjad, Pradip R Khaladkar
Hardcover
R7,355
Discovery Miles 73 550
Phase Transformations in Steels…
Elena Pereloma, David V. Edmonds
Hardcover
R5,918
Discovery Miles 59 180
|