![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Metals technology / metallurgy
This book, first published in 1966, reports the results of a pilot study devoted to understanding the middle-term resource situation for one metal - manganese. Two factors bring the different parts of the manganese supply-demand picture together, one economic and the other political, both of which are examined in detail in this report. Low-Grade and Nonconventional Sources of Manganese will be of interest to students of environmental studies.
The aim of this book is to present a rigorous phenomenological and mathematical formulation of sedimentation processes and to show how this theory can be applied to the design and control of continuous thickeners. The book is directed to stu dents and researchers in applied mathematics and engineering sciences, especially in metallurgical, chemical, mechanical and civil engineering, and to practicing en gineers in the process industries. Such a vast and diverse audience should read this book differently. For this reason we have organized the chapters in such a way that the book can be read in two ways. Engineers and engineering students will find a rigorous formulation of the mathematical model of sedimentation and the exact and approximate solutions for the most important problems encountered in the laboratory and in industry in Chapters 1 to 3, 7 and 8, and 10 to 12, which form a self-contained subject. They can skip Chapters 4 to 6 and 9, which are most important to applied mathematicians, without losing the main features of sedimentation processes. On the other hand, applied mathematicians will find special interest in Chapters 4 to 6 and 9 which show some known but many recent results in the field of conservation laws of quasilinear hyperbolic and degenerate parabolic equations of great interest today. These two approaches to the theory keep their own styles: the mathematical approach with theorems and proofs, and the phenomenological approach with its deductive technique."
Includes science and technology of processing solid minerals to concentrates of grades, suitable for industrial extraction of metal values and other non-metallic products Provides a logical progression from basic to advanced concepts in mineral processing Designed to stimulate students to think as mineral processing engineers in training Explores sustainable mineral processing and circular economy in mineral processing Contains worked examples that clearly illustrates the various theories presented and help readers develop problem solving skills in mineral processing
This book introduces the principles of the response of steels to the austenitizing process and is intended to act as a source book for information and review purposes for metallurgists, metallurgical engineers and other materials scientists.
This book provides a comprehensive introduction to and technical description of a unique patented surface-modification technology: plasma surface metallurgy with double-glow discharge plasma process, known as the Xu-Tec process. As such it promotes further attention and interest in scientific research and engineering development in this area, as well as industrial utilization and product commercialization. The Xu-Tec process has opened up a new material engineering field of "Plasma Surface Metallurgy". This surface-modification process can transform many low-grade and low-cost industrial engineering materials into "gold" materials with a high value and high grade or special functions. This improved material can be widely used in industrial production to improve the surface performance and quality of mechanical parts and manufacturing products, and to conserve expensive alloying elements for the benefit of all mankind. "This book will be valuable to those in the general area of surface metallurgy. The substantial description of the Xu-Tec process is very important and should assist in expanding the use of this superior technique. The in-depth explanation of glow discharges and their use in general will also serve as a valuable reference in the field." James E. Thompson, Prof. Fellow of the IEEE Dean of Engineering Emeritus University of Missouri, Columbia, Missouri, USA November, 2016 "A BREAKTHROUGH IN MAKING METAL TOUGHER". ---- SCIENCE & TECHNOLOGY Business Week, July 24, 1989 "NOVEL SURFACE ALLOYING PROCESS" --- THE LEADING EDGE TECHNOLOGY WORDWIDE Materials and Processing Report, Dec. 1987
Joining Processes is aimed at scientists and engineers who need to specify effective means of joining metals and ceramics, and also for undergraduates whose studies encompass joining processes. Joining Processes provides a brief review of the spectrum of joining processes ranging from fusion welding to adhesive bonding, followed by a detailed introduction to brazing, diffusion bonding and their hybrid processes. This book also describes the scientific principles of the joining processes and provides practical information about the optimum selection of joining materials, joint designs and processing parameters. The effects of both similarities and significant differences of the processes on joint properties are emphasised and illustrated by descriptions of case histories of successful applications.
This book systematizes data on the heterophase states and their evolution in perovskite-type ferroelectric solid solutions. It also provides a general interpretation of heterophase and domain structures on changing temperature, composition or electric field, as well as the complete analysis of interconnections domain structures, unit-cell parameters changes, heterophase structures and stress relief. The description of numerous examples of heterophase states in lead-free ferroelectric solid solutions is also included. Domain state-interface diagrams contribute to the interpretation of heterophase states in perovskite-type ferroelectric solid solutions and describe the stress relief in the presence of polydomain phases, the behavior of unit-cell parameters of coexisting phases, the effect of external electric field etc. This 2nd edition generalizes the results on the heterophase ferroelectric solid solutions and the stress relief and presents new results on heterophase/domain structures and phase contents in lead-free ferroelectric solid solutions.
The mineral resources of the industrialized countries, especially the member nations of the North Atlantic Treaty Organiza tion, are being depleted at such a rate that more and more of these count ries are beginning to depend on ore imported from other coun tries. To sustain the economic and strategie well-being of these member countries, it becomes imperative that a program of developing and exploiting other non-conventional mineral resources and a con servation program where metal values from waste dumps and scrap metals and alloys are recycled must be initiated and implemented. In order to meet this challenge, new processes and technology must be available for consideration in the design and operation of the new plants. One of the possible routes of extracting the metals from their ores, especially for multimetal complex ores and very low grade ores, is by hydrometallurgical processing. The hydrometallurgical route of metal recovery where dissolution (leaching), separation and concentration (ion exchange, solvent extraction, and membrane separation) and reduction to metal (cementation, precipitation by gaseous reduction, and electrolysis) is carried out at near ambient temperature is becoming more competi tive with the conventional high temperature processes used in the smelting of metals from high grade and beneficiated ores."
This collection presents papers on the science, engineering, and technology of shape castings, with contributions from researchers worldwide. Among the topics that are addressed are structure-property-performance relationships, modeling of casting processes, and the effect of casting defects on the mechanical properties of cast alloys.
The intention of this book is to reveal and discuss some aspects of the metal fo- ing plasticity theory. The modern theory describes deformation of metallic bodies in cold and hot regimes under combined thermal and mechanical loadings. Th- mal and deformation fields appear in metal forming in various forms. A thermal field influences the material properties, modifies the extent of plastic zones, etc. and the deformation of metallic body induces changes in temperature distribution. The thermal effects in metal forming plasticity can be studied at two levels, - pending on whether uncoupled or coupled theories of thermo-plastic response have to be applied. A majority of metal forming processes can be satisfactorily studied within an uncoupled theory. In such an approach the temperature enters the stress-strain relation through the material constants and through the thermal dilatation. The description of thermo-plastic deformation in metal forming is c- ried out on the ground of thermodynamics.
Do you work with chemical Vapor deposition processes or reactors? Have you ever wondered what goes on inside the chamber or how the deposition processes work? If the answer to this is yes, then Principles of Chemical Vapor Deposition is for you! Principles of Chemical Vapor Deposition provides a simple introduction to heat and mass transfer, surface and gas phase chemistry, and plasma discharge characteristics. In addition, the book includes discussions of practical films and reactors to help in the development of better processes and equipment. This book will assist workers new to chemical vapor deposition (CVD) to understand CVD reactors and processes and to comprehend and exploit the literature in the field. The book reviews several disparate fields with which many researchers may have only a passing acquaintance, such as heat and mass transfer, discharge physics, and surface chemistry, focusing on key issues relevant to CVD. The book also examines examples of realistic industrial reactors and processes with simplified analysis to demonstrate how to apply the principles to practical situations. The book does not attempt to exhaustively survey the literature or to intimidate the reader with irrelevant mathematical apparatus. This book is as simple as possible while still retaining the essential physics and chemistry. The book is generously illustrated to assist the reader in forming the mental images which are the basis of understanding. This book will be invaluable to process engineers, graduate students and researchers newly involved in the development of processes and hardware for chemical vapor deposition. In addition, the book is appropriate for senior levelundergraduates or graduate courses on chemical vapor deposition as well as semiconductor manufacturing and coating technologies.
EPD Congress is an annual collection that addresses extraction and processing metallurgy. The papers in this book are drawn from symposia held at the 2016 Annual Meeting of The Minerals, Metals & Materials Society. The 2016 edition includes papers from the following symposia: *Materials Processing Fundamentals *Advanced Characterization Techniques for Quantifying and Modeling Deformation
Case Studies of Material Corrosion Prevention for Oil and Gas Valves delivers a critical reference for engineers and corrosion researchers. Packed with nearly 30 real-world case studies, this reference gives engineers standardized knowledge on how to maintain, select and prevent typical corrosion problems in a variety of oil and gas settings. Subsea, offshore, refineries and processing plants are all included, covering a variety of challenges such as chloride stress cracking, how to use Teflon powder to prevent cross contamination, and carbon dioxide corrosion. Organized for quick discovery, this book gives engineers a much-needed tool to safely protect their assets and the environment. Engineers working in oil and gas operations understand that corrosion is a costly expense that increases emissions and damages the environment, but many standards do not provide practical examples with solutions, leaving engineers to learn through experience. This resource provides comprehensive information on topics of interest.
Proceedings of the European Workshop on Ordering and Disordering held in Grenoble, France, 10-12 July 1991.
While there are many books about Finite Element Methods, this is among the first volume devoted to the application of FEM in spring design. It has been compiled by the working group on Finite Element Analysis of Springs, sponsored by the Japan Society of Spring Research. The monograph considers the wide spectrum of spring shapes and functions, enabling readers to use FEM to optimize designs for even the most advanced engineering cases. This book provides the theoretical background and state-of-the-art methodologies for numerical spring analysis. It also employs and explains many real-world design examples, calculated by commercial software and then compared with experimental data, to illustrate the applicability of FEM to spring analysis. Engineers already dealing with spring design will find this an excellent means of learning how to use FEM in their work, while others will find here a helpful introduction to modern spring technology and design.
This book explains modern and interesting physics in heavy-fermion (HF) compounds to graduate students and researchers in condensed matter physics. It presents a theory of heavy-fermion (HF) compounds such as HF metals, quantum spin liquids, quasicrystals and two-dimensional Fermi systems. The basic low-temperature properties and the scaling behavior of the compounds are described within the framework of the theory of fermion condensation quantum phase transition (FCQPT). Upon reading the book, the reader finds that HF compounds with quite different microscopic nature exhibit the same non-Fermi liquid behavior, while the data collected on very different HF systems have a universal scaling behavior, and these compounds are unexpectedly uniform despite their diversity. For the reader's convenience, the analysis of compounds is carried out in the context of salient experimental results. The numerous calculations of the non-Fermi liquid behavior, thermodynamic, relaxation and transport properties, being in good agreement with experimental facts, offer the reader solid grounds to learn the theory's applications. Finally, the reader will learn that FCQPT develops unexpectedly simple, yet completely good description of HF compounds.
This book comprehensively discusses essential aspects of terminal ballistics, combining experimental data, numerical simulations and analytical modeling. This new, 3rd edition reflects a number of recent advances in materials science, such as the use of polyurea layers on metallic plates in order to improve their ballistics. In addition, more data and analyses are now available on dwell and interface defeat in ceramic tiles coated with polymers, and are presented here. Lastly, the new edition includes new results, numerical and empirical, concerning the DIF issue in brittle solids, as well as the "upturn" phenomenon in the stress-strain curves of ductile solids.The author also added a new analysis of concrete penetration experiments which accounts for the scaling issue in this field. This is a new,and important, addition which we are happy to announce. They also added some new insights into the interaction of EEP's and FSP projectiles with metallic plates. Throughout the book, the authors demonstrate the advantages of the simulation approach in terms of understanding the basic physics behind the phenomena investigated, making it a must-read for all professionals who need to understand terminal ballistics.
Interest in the study of early European cultures is growing. These cultures have left us objects made of gold, other metals and ceramics. The advent of metal detectors, coupled with improved analytical techniques, has increased the number of findings of such objects enormously. Gold was used for economic and ceremonial purposes and thus the gold objects are an important key to our understanding of the social and political structures, as well as the technological achievements, of Bronze and Iron Age European societies. A correct interpretation of the information provided by gold and other metal objects requires the cooperation of experts in the fields of social, materials and natural science. Detailed investigation of gold deposits in Europe have revealed the composition and genesis of the deposits as sources of the metal. In Prehistoric Gold in Europe, a group of leading European geoscientists, metallurgists and archaeologists discuss the techniques of gold mining and metallurgy, the socioeconomic importance of gold as coinage and a symbol of wealth and status, and as an indicator of religious habits, as well as a mirror of trade and cultural relations mirrored by the distribution and types of gold objects in prehistoric times.
The European Collaborative Programme on Materials for Gas Turbines known as COST-50 was initiated in 1971 and has been supported since then by the Commission of European Communities. The achievements made during the first phase of COST-50 were reviewed at the Conference held in Liege, September 25-27, 1978 and published by Applied Science Publishers Ltd. Nine European Countries : Austria, Belgium, the Federal Republic of Germany, France, Italy, The Netherlands, Sweden, Switzerland, the United Kingdom, and the Joint Research Center of the Community, agreed to continue their participation in COST-50 and the results of the second phase were presented at the Conference held in Liege, October 4-6, 1982 under the following headings : - Corrosion and Coatings - Fatigue, Creep and Structural Stability - Processing The technical sessions consisted of invited papers reviewing recent progress in the development of high temperature alloys with particular emphasis on the results of the European Collaborative Programme. Furthermore, some areas were reviewed by eminent speakers from the United States of America, due to their expertise in their respective fields. In this context and as a tradition introduced in 1978, the keynote lecture "Superalloys technology : today and tomorrow" was del ivered by Dr. F. L. Versnyder. The Conference was completed with a significant Poster Session comprising about fifty contributions from Europe and elsewhere. This book comprises a total of fifty four contributions representing almost all of the papers delivered at the technical sessions and a large part of the presentations made at the Poster Session.
This is the fifth edition of the highly successful work first published in 1968, comprising two definitive volumes on particle characterisation. The first volume is devoted to sampling and particle size measurement, while surface area and pore size determination are reviewed in volume 2. Particle size and characterisation are central to understanding powder properties and behaviour. This book describes numerous potential measuring devices, how they operate and their advantages and disadvantages. It comprise a fully comprehensive treatise on the wide range of available equipment with an extensive literature survey, and a list of manufacturers and suppliers. The author's blend of academic and industrial experience results in a readable technical book with information on how to analyse, present, and extract useful information from data. This is an essential reference book for both industrial and academic research workers in a variety of areas including: pharmaceuticals, food science, pollution analysis and control, electronic materials, agricultural products, polymers, pigments and chemicals.
This volume aims at bringing together the results of extensive research done during the last fifteen years on the interfacial photoelectronic properties of the inorganic layered semiconducting materials, mainly in relation to solar energy conversion. Significant contributions have been made both on the fundamental aspects of interface characteristics and on the suitability of the layered materials in photoelectrochemical (semiconductor/electrolyte junctions) and in solid state photovoltaic(Schottky and p-n junctions) cells. New insights into the physical and chemical characteristics of the contact surfaces have been gained and many new applications of these materials have been revealed. In particular, the basal plane surface of the layered materials shows low chemical reactivity and specific electronic behaviour with respect to isotropic solids. In electrochemical systems, the inert nature of these surfaces characterized by saturated chemical bonds has been recognized from studies on charge transfer reactions and catalysis. In addition, studies on the role of the d-band electronic transitions and the dynamics of the photogene rated charge carriers in the relative stability of the photoelectrodes of the transition metal dichalcogenides have deepened the understanding of the interfacial photoreactions. Transition metal layered compounds are also recognized as ideal model compounds for the studies Involving surfaces: photoreactions, adsorption phenomena and catalysis, scanning tunneling microscopy and spectroscopy and epitaxial growth of thin films. Recently, quantum size effects have been investigated in layered semiconductor colloids.
The technology, operation, energy, environmental, analysis, and future development of the metallurgical industries utilizing high temperature processes are covered in the book. The innovations on the extraction and production of ferrous and nonferrous metals, alloys, and refractory and ceramic materials, the heating approaches and energy management, and the treatment and utilizations of the wastes and by-products are the topics of special interests. This book focuses on the following issues: *High Efficiency New Metallurgical Process and Technology Fundamental Research of Metallurgical Process *Alloys and Materials Preparation *Direct Reduction and Smelting Reduction *Coking, New Energy and Environment *Utilization of Solid Slag/Wastes and Complex Ores *Characterization of High Temperature Metallurgical Process |
![]() ![]() You may like...
|