![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Metals technology / metallurgy
This volume entitled Advanced Science and Technology of Sintering, contains the edited Proceedings of the Ninth World Round Table Conference on Sintering (IX WRTCS), held in Belgrade, Yugoslavia, September 1-4 1998. The gathering was one in a series of World Round Table Conferences on Sintering organised every four years by the Serbian Academy of Sciences and Arts (SASA) and the International Institute for the Science of Sintering (IISS). The World Round Table Conferences on Sintering have been traditionally held in Yugoslavia. The first meeting was organised in Herceg Novi in 1969 and since then they have regularly gathered the scientific elite in the science of sintering. It is not by chance that, at these conferences, G. C. Kuczynski, G. V. Samsonov, R. Coble, Ya. E. Geguzin and other great names in this branch of science presented their latest results making great qualitative leaps in the its development. Belgrade hosted this conference for the first time. It was chosen as a reminder that 30 years ago it was the place where the International Team for Sintering was formed, further growing into the International Institute for the Science of Sintering. The IX WRTCS lasted four days. It included 156 participants from 17 countries who presented the results of their theoretical and experimental research in 130 papers in the form of plenary lectures, oral presentations and poster sections.
This book describes spark plasma sintering (SPS) in depth. It addresses fundamentals and material-specific considerations, techniques, and applications across a broad spectrum of materials. The book highlights methods used to consolidate metallic or ceramic particles in very short times. It highlights the production of complex alloys and metal matrix composites with enhanced mechanical and wear properties. Emphasis is placed on the speed of the sintering processes, uniformity in product microstructure and properties, reduced grain growth, the compaction and sintering of materials in one processing step, various materials processing, and high energy efficiency. Current and potential applications in space science and aeronautics, automation, mechanical engineering, and biomedicine are addressed throughout the book.
This book is a compilation of selected papers from the 2014 New Trends in Fatigue and Fracture (NT2F14) Conference, which was held in Belgrade, Serbia. This prestigious conference brought together delegates from around the globe to discuss how to characterize, predict and analyze the fatigue and fracture of engineering materials, components, and structures using theoretical, experimental, numerical and practical approaches. It highlights some important new trends in fracture mechanics presented at the conference, such as: * two-parameter fracture mechanics, arising from the coupling of fracture toughness and stress constraints * high-performance steel for gas and oil transportation and production (pressure vessels and boilers) * safety and reliability of welded joints This book includes 12 contributions from well-known international scientists and a special tribute dedicated to the scientific contributions of Stojan Sedmark, who passed away in 2014.
On November 9-11, 1998,85 participants, representing 17 countries, gathered in Aubum Hills, Michigan, at the Chrysler Tech Center, to attend a workshop "SSM'98" (or Sculptured Surface Machining '98) organized by IFIP Working Group 5.3. This was the first major workshop on sculptured surface machining since the CAM-I sponsored conference "Machining Impossible Surfaces" held in 1981. The purpose of the SSM'98 workshop, entitled "Machining Impossible Shapes," was to promote a cross-fertilization of ideas among three communities: industrial users, CAM software developers and academic researchers. There were 17 participants who were "industrial users," 15 represented CAM software developers, 4 were from the machine tool industry, with the remainder being academic researchers. The format of the meeting included 40 presentations in 9 sessions, 4 keynote speeches and a sufficient amount of time for informal discussion amongst the participants. One of the most valuable aspects of the workshop was the opportunity for participants to meet informally and to discuss their mutual interests. This led to two "participant organized" sessions on five axis machining and on machine tool controllers.
A comprehensive guide to avoiding hydrogen cracking which serves as an essential problem-solver for anyone involved in the welding of ferritic steels. The authors provide a lucid and thorough explanation of the theoretical background to the subject but the main emphasis throughout is firmly on practice.
This book presents the state-of-the-art of the technology from the Japanese perspective, and covers sensors, sensing systems, measurement and control in relation to welding technologies. A general review of the technology in Japan is followed by thirty nine chapters on applications of sensors to welding processes.
Superalloys II, Edited by Chester T. Sims, Norman S. Stoloff and William C. Hegel
flour, potato starch, cracking catalyst, sand, and gravel, one will probably agree that the first four materials definitely are powders and the last one certainly is not. Whether one would call sand a powder probably depends on the partiele size and on personal Vlews. When the astronaut Neil Armstrong returned to the Earth from his trip on the surface of the Moon, he stated: 'The surface is fine and powdery. I can kick it up loosely with my toe. It does adhere in fine layers like powdered charcoal to the sole and inside of my boots. I only go in a small fraction of an inch, but I can see the footprints of my boots and the treads in the fine sandy partieles. ' These words elearly show that the behaviour of powders de pends on the circumstances. In wh at respects are those on the Moon different from those on the Earth? (1) The gravitational force on the surface of the Moon is only one-sixth of that on the Earth. (2) There is no gas on the Moon. The latter aspect means that any water brought there would evaporate and disappear immediately, hence powders on the Moon will always be perfect1y dry so that cohesion between the separate partieles due to liquid bridges will be zero.
This book provides designers, welding engineers and metallurgists with the essential information for understanding the welding operation and for applying the processes in production. The fundamental electrical, arc and process characteristics are described for various operating modes, including current, micro-TIG, TIG hot wire, narrow gap TIG and keyhole plasma.
Metallic (magnetic and non-magnetic) nanocrystalline materials have been known for over ten years but only recent developments in the research into those complex alloys and their metastable amorphous precursors have created a need to summarize the most important accomplishments in the field. This book is a collection of articles on various aspects of metallic nanocrystalline materials, and an attempt to address this above need. The main focus of the papers is on the new issues that emerge in the studies of nanocrystalline materials, and, in particular, on (i) new compositions of the alloys, (ii) properties of conventional nanocrystalline materials, (iii) modeling and simulations, (iv) preparation methods, (v) experimental techniques of measurements, and (vi) different modern applications. Interesting phenomena of the physics of nanocrystalline materials are a consequence of the effects induced by the nanocrystalline structure. They include interface physics, the influence of the grain boundaries, the averaging of magnetic anisotropy by exchange interactions, the decrease in exchange length, and the existence of a minimum two-phase structure at the atomic scale. Attention is also paid to the special character of the local atomic ordering and to the corresponding interatomic bonding as well as to anomalies and particularities of electron density distributions, and to the formation of metastable, nanocrystalline (or quasi-crystalline) phases built from exceptionally small grains with special properties. Another important focus of attention are new classes of materials which are not based on new compositions, but rather on the original and special crystalline structure in thenanoscale.
This book describes in a comprehensive manner the technical aspects of separation of rare earth elements into individual elements for industrial and commercial use. The authors include details on and differentiate among the effective separation of rare earth elements for various parts of the world. They introduce new applications of separation of rare earth elements from concentrates of diverse ore types.
The book emphasizes various aspects of processing secondary sources for recovery of uranium. The field of secondary resource processing is gaining ground over the last few years as it is eco-friendly, economical and in tune with the philosophy of sustainable development. The book is the first one of its type in the area and includes a succint and comprehensive description of related areas of ore mineralogy, resource classification, processing principles involved in uranium solubilisation followed by separation and safety aspects. The clear organisation and the carefully selected figures and tables makes the treatment invaluable for practising engineers, research workers and academic institutions.
This book reviews fundamental advances in the use of metallic biomaterials to reconstruct hard tissues and blood vessels. It also covers the latest advances in representative metallic biomaterials, such as stainless steels, Co-Cr alloys, titanium and its alloys, zirconium, tantalum and niobium based alloys. In addition, the latest findings on corrosion, cytotoxic and allergic problems caused by metallic biomaterials are introduced. The book offers a valuable reference source for researchers, graduate students and clinicians working in the fields of materials, surgery, dentistry, and mechanics. Mitsuo Niinomi, PhD, D.D.Sc., is a Professor at the Institute for Materials Research, Tohoku University, Japan. Takayuki Narushima, PhD, is a Professor at the Department of Materials Processing, Tohoku University, Japan. Masaaki Nakai, PhD, is an Associate Professor at the Institute for Materials Research, Tohoku University, Japan.
There is currently great interest in the process of diffusion bonding. The main thrust has been in the joining of advanced materials such as superplastic alloys, metal matrix composites and ceramics and, most importantly, to introduce the process into mass-production operations. Diffusion bonding has also led to reduced manufacturing costs and weight savings in conventional materials and developments in hot isostatic pressing have allowed greater design flexibility. Since the first conference on Diffusion Bonding, held at Cranfield in 1987, considerable advances have been made and it was therefore considered appropriate to organise the Second International Conference on Diffusion Bonding which was held at Cranfield Institute of Technology on 28 and 29 March 1990. The meeting provided a forum for the presentation and discussion of recent developments in Diffusion Bonding and was divided into four main subject areas: steel bonding and quality control, diffusion bonding of aluminium alloys, bonding of high temperature materials and general applications. This structure is retained in the proceedings. DAVID STEPHENSON vii CONTENTS v Preface ......................... .
An understanding ofthe properties and the handling characteristics of liquids and gases has long been regarded as an essential requirement for most practising engineers. It is therefore not surprising that, over the years, there has been a regular appearance of books dealing with the fundamentals of fluid mechanics, fluid flow, hydraulics and related topics. What is surprising is that there has been no parallel development of the related discipline of Bulk Solids Handling, despite its increasing importance in modern industry across the world. It is only very recently that a structured approach to the teaching, and learning, of the subject has begun to evolve. A reason for the slow emergence of Bulk Solids Handling as an accepted topic of study in academic courses on mechanical, agricultural, chemical, mining and civil engineering is perhaps that the practice is so often taken for granted. Certainly the variety of materials being handled in bulk is almost endless, ranging in size from fine dust to rocks, in value from refuse to gold, and in temperature from deep-frozen peas to near-molten metal.
Significant experimental work is devoted to the preparation of one and zero dimensional semiconductor structures in view of future electronic and optical devices which involve quantum effects. The aim is good control in the realisation of nanometer structures both in vertical and lateral direction. Conventional processing techniques based on lithography face inherent problems such as limited resolution and surface defects caused by reactive ion etching. During the last few years several research groups started working on direct syntheses of semiconductor nanostructures by combining epitaxial growth techniques such as molecular beam epitaxy and chemical vapour deposition with pre patterning of the substrate wafers. Another idea is based on island formation in strained layer heteroepitaxy. Zero and one dimensional structures with dimensions down to a few atomic distances have been realised this way. An important point is that the size of the quantum structures is controlled within the epitaxial deposition in a self-adjusting process. The main subjects of the book are: Theoretical aspects of epitaxial growth, selfassembling nanostructures and cluster formation, epitaxial growth in tilted and non-(001) surfaces, cleaved edge overgrowth, nanostructure growth on patterned silicon substrates, nanostructures prepared by selective area epitaxy or growth on patterned substrates, in-situ etching and device applications based on epitaxial regrowth on patterned substrates. The experimental work mainly concentrated on GaAs/A1GaAs, GaAs/InGaAs, InGaP/InP and Si/SiGe based semiconductor heterostructures. Growth related problems received special attention. The different concepts for preparation of low dimensional structures are presented to allow direct comparison and to identify new concepts for future research work.
teacher Professor Ernst-Joachim Ivers to whom I still owe many insights 20 years after the end of his working life. This English edition is not an unedited translation of the German edition of 1990. The text has been substantially revised in some chapters, taking into account the literature published in the mean time. I wish to thank Dr.-Ing. H. Finken, Freiberg, who has prepared the translation from German into English with deep scientific understanding and in close contact with the author. I also wish to express my gratitude to Chapman & Hall for their support to this project without which the English edition could not have been published. Dr.-Ing. habil. C. Bernhardt Freiberg 1 Position, tasks and structure of particle size analysis Today the concept of particle size analysis is that of a special field of particle measurement technology, which in turn is part of particulate technology. This classification has developed over the last 20 years; it is the result of a scientific integration process taking place in many industrialized countries of the world. In recent years, the meaning and mutual connection of the related concepts as well as the tasks of the scientific disciplines designated by them have been the subject of intensive discussion which, however, has not led to a generally accepted terminology.
In recent years the importance of extruded alloys has increased due to the decline in copper extrusion, increased use in structural applications, environmental impact and reduced energy consumption. There have also been huge technical advances. This text provides comprehensive coverage of the metallurgical, mathematical and practical features of the process.
100 years after the first observation of ripening by Ostwald and 40 years after the first publication of a theory describing this process, this monograph presents, in a self-consistent and comprehensive manner, all the bits and pieces of coarsening theories so that the main issues and the underlying mathematics of self-similar coarsening of dispersed systems can be understood. It contains all of the background material necessary to understand growth and coarsening of spherical particles or droplets in a liquid or solid matrix. Some basic knowledge of heat and mass transfer, thermodynamics and differential equations would be helpful, but not necessary, as all the concepts required are introduced. The text is suitable for advanced undergraduate and graduate students as well as for researchers. Rather than giving a complete survey of the field, it presents a careful derivation of the existing results and places them into some perspective.
This thesis consists of an in-depth study of investigating microstructure-property relationships in bulk metallic glasses using a novel quantitative approach by which influence of the second phase features on mechanical properties can be independently and systematically analyzed. The author evaluates and optimizes the elastic and plastic deformation, as well as the overall toughness of cellular honeycombs under in-plane compression and porous heterostructures under uniaxial tension. The study reveals three major deformation zones in cellular metallic glass structures, where deformation changes from collective buckling showing non-linear elasticity to localized failure exhibiting a brittle-like deformation, and finally to global sudden failure with negligible plasticity as the length to thickness ratio of the ligaments increases. The author found that spacing and size of the pores, the pore configuration within the matrix, and the overall width of the sample determines the extent of deformation, where the optimized values are attained for pore diameter to spacing ratio of one with AB type pore stacking.
Emerging Fields in Sol-gel Science and Technology contains selected papers from the symposium on "Sol-Gel and Vitreous Materials and Applications" held during the International Materials Research Congress in Cancun, Mexico in August 2002. One hundred and twenty researchers representing 10 countries attended this symposium. Some of the subjects covered in this symposium include 1.) synthesis of new materials endowed with outstanding and non-conventional optical, magnetic, electrical, thermal, catalytic, and mechanical properties; 2.) study of the sorption properties of model porous materials in order to test the validity of previous and recent theories; 3.) theoretical studies related to density functional theory, fractal and scaling law approaches, 4.) synthesis of biomaterials for use in medicine and pollution control; 5.) application of sol-gel colloids in the fine-chemistry industry in products such as fragrances and pharmaceuticals; 6.) development of special vitreous materials; 7.) implementation of inorganic thin films, and 8.) synthesis of materials for energy saving. " |
You may like...
Computational and Experimental…
Joao Manuel R.S. Tavares, R.M. Natal Jorge
Hardcover
Wild About You - A 60-Day Devotional For…
John Eldredge, Stasi Eldredge
Hardcover
|