![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Metals technology / metallurgy
In this thesis, the author investigates experimentally and numericallythe fracture behavior of an electron beam welded joint made fromtwo butt S355 plates. The 2D Rousselier model, the Gurson-Tvergaard-Needleman (GTN) model and the cohesive zone model (CZM) wereadopted to predict the crack propagation of thick compact tension (CT)specimens. Advantages and disadvantages of the three mentioned modelsare discussed. The cohesive zone model is suggested as it is easy to usefor scientists & engineers because the CZM has less model parametersand can be used to simulate arbitrary crack propagation. The resultsshown in this thesis help to evaluate the fracture behavior of a metallicmaterial. A 3D optical deformation measurement system (ARAMIS) andthe synchrotron radiation-computed laminography (SRCL) techniquereveal for the first time the damage evolution on the surface of the sampleand inside a thin sheet specimen obtained from steel S355. Damageevolution by void initiation, growth and coalescence are visualized in2D and 3D laminographic images. Two fracture types, i.e., a flat crackpropagation originated from void initiation, growth and coalescenceand a shear coalescence mechanism are visualized in 2D and 3D imagesof laminographic data, showing the complexity of real fracture. Inthe dissertation, the 3D Rousselier model is applied for the first timesuccessfully to predict different microcrack shapes before shear cracksarise by defining the finite elements in front of the initial notch withinhomogeneous f0-values. The influence of the distribution of inclusionson the fracture shape is also discussed. For the analyzed material, ahomogeneous distribution of particles in the material provides thehighest resistance to fracture.
This books presents a current look at friction stir welding technology from application to characterization and from modeling to R&D. It is a compilation of the recent progress relating to friction stir technologies including derivative technologies, high-temperature applications, industrial applications, dissimilar alloy/materials, lightweight alloys, simulation, and characterization. With contributions from leaders and experts in industry and academia, this will be a comprehensive source for the field of Friction Stir Welding and Processing.
The papers in this collection cover a diverse range of topics on the topic of fatigue of materials. The editors have grouped the papers into five sections. Sections 1 and 2 contain papers that (i) review the current state of knowledge both related and relevant to the subject of fatigue behavior of materials, and (ii) present new, innovative, and emerging techniques for experimental evaluation of the fatigue behavior. Sections 3 and 4 focus on advanced materials that are used in performance-critical applications in the aerospace and automotive industries, such as the alloys of titanium, nickel, aluminum, and magnesium. Section 5 presents papers relating to other materials of engineering interest, such as iron and steel, polymer, rubber, and composites.
This collection gives broad and up-to-date results in the research and development of materials characterization and processing. Coverage is well-rounded from minerals, metals, and materials characterization and developments in extraction to the fabrication and performance of materials. In addition, topics as varied as structural steels to electronic materials to plant-based composites are explored. The latest research presented in this wide area make this book both timely and relevant to the materials science field as a whole. The book explores scientific processes to characterize materials using modern technologies, and focuses on the interrelationships and interdependence among processing, structure, properties, and performance of materials. Topics covered include ferrous materials, non-ferrous materials, minerals, ceramics, clays, soft materials, method development, processing, corrosion, welding, solidification, composites, extraction, powders, nanomaterials, advanced materials, and several others.
Where does a wannabe miner or established individual operator get the information to create a small yet highly profitable mining company? When author A R C Matuska searched for simple, practical mining books and information about the industry, he found high-powered studies, academic theses and computer modeling. In short, nothing of use to the small, practical mine operator. The best information he found was in booklets aimed at ex-servicemen after World War II, encouraging them to take up mining in the British colonies in Africa. Since then, there has not been much written in such a useful and practical manner. To answer this need, a veritable goldmine of information is included in the book Practical Mining and Gold Processing for the Small Scale Operator. Where does a newcomer to the industry find out how to sample and calculate a potential resource and plan his mining business? Where does he get the information to run a small ball mill or stamp mill? How does he set up and dress a simple amalgam plate, retort some amalgam or make up a retort, and calculate the percentage of gold in bullion? Where does a small operator find out how to set up a low-cost cyanide plant and its running procedures? And how does he improve mining and blasting efficiencies? This book provides practical applications and solutions to get you started in one of the most diverse, profitable and interesting industries. It is indexed in detail so information can be easily found without sifting through realms of data. A R C Matuska is a career miner. He owns and consults for several mining properties in East and Central Africa. Publisher's website: http: //sbpra.com/ARCMatuska
The 3rd edition of this popular textbook covers current topics in all areas of casting solidification. Partial differential equations and numerical analysis are used extensively throughout the text, with numerous calculation examples, to help the reader in achieving a working knowledge of computational solidification modeling. The features of this new edition include: * new chapters on semi-solid and metal matrix composites solidification * a significantly extended treatment of multiscale modeling of solidification and its applications to commercial alloys * a survey of new topics such as solidification of multicomponent alloys and molecular dynamic modeling * new theories, including a theory on oxide bi-films in the treatment of shrinkage problems * an in-depth treatment of the theoretical aspects of the solidification of the most important commercial alloys including steel, cast iron, aluminum-silicon eutectics, and superalloys * updated tables of material constants.
This book focuses on the new direction of magnetic pulsed metal working by attraction of sheet metals. In the first part, the authors focus on the magnetic pulsed pressure for forming of inner angles in the sheet metals. Part 2 of the book presents the magnetic pulsed attraction of thin-walled metals. In the third and last part, the authors present the practical realization of external restoring the dents on the car bodies by electromagnetic metal forming attraction.
This book offers a unique approach to integrated high-temperature process modelling, intended to serve as a design aid for new metal processing technologies. The second edition has been substantially expanded to include new content such as: a new algorithm and test results of 3D stereoscopic visualization; new programming procedures for modelling; the validation of computer simulation using experimental results; a multiscale model of grain growth; a conceptual methodology developing "high-temperature" CCT (continuous cooling transformation) diagrams, and many more examples validating the numerical simulations. The models presented are applied in comprehensive tests in order to solve problems related to the high-temperature deformation of steel. The testing methods include both physical tests using specialist laboratory instruments, and advanced mathematical modelling: the Finite Element method (FE), Smoothed Particle Hydrodynamics method (SPH) and Mo nte Carlo method (MC).This approach, which integrates the fields of physical and computer-based simulations, forms the basis for the described concept of integrated high-temperature process modelling, presented in detail in this book.
The book looks into the recent advances in the ex-situ production routes and properties of aluminum and magnesium based metal matrix nanocomposites (MMNCs), produced either by liquid or semi-solid state methods. It comprehensively summarizes work done in the last 10 years including the mechanical properties of different matrix/nanoreinforcement systems. The book also addresses future research direction, steps taken and missing developments to achieve the full industrial exploitation of such composites. The content of the book appeals to researchers and industrial practitioners in the area of materials development for metal matrix nanocomposites and its applications.
The book gives a systematic and detailed description of a new integrated product and process development approach for sheet metal manufacturing. Special attention is given to manufacturing that unites multidisciplinary competences of product design, material science, and production engineering, as well as mathematical optimization and computer based information technology. The case study of integral sheet metal structures is used by the authors to introduce the results related to the recent manufacturing technologies of linear flow splitting, bend splitting, and corresponding integrated process chains for sheet metal structures.
Covering the physical and numerical modeling of materials processing, this book includes contributions across the range of metals and minerals. This collection offers a unique opportunity to present models and results for key processes involved in extraction, joining, separation, and casting of materials. The corresponding fundamentals of mass and heat transport as well as physical and thermodynamics properties are addressed, allowing for a cross-disciplinary vision of the field.
This comprehensive book offers a clear account of the theory and applications of advanced metal forming. It provides a detailed discussion of specific forming processes, such as deep drawing, rolling, bending extrusion and stamping. The author highlights recent developments of metal forming technologies and explains sound, new and powerful expert system techniques for solving advanced engineering problems in metal forming. In addition, the basics of expert systems, their importance and applications to metal forming processes, computer-aided analysis of metalworking processes, formability analysis, mathematical modeling and case studies of individual processes are presented.
The main goal of this book is to present the methods used to calculate the most important parameters for ropes, and to explain how they are applied on the basis of numerous sample calculations. The book, based on the most important chapters of the German book DRAHTSEILE, has been updated to reflect the latest developments, with the new edition especially focusing on computational methods for wire ropes. Many new calculations and examples have also been added to facilitate the dimensioning and calculation of mechanical characteristics of wire ropes. This book offers a valuable resource for all those working with wire ropes, including construction engineers, operators and supervisors of machines and installations involving wire ropes.
This work focuses on the fundamentals of MMCs for engineers and designers. The new edition addresses new issues and developments in the areas of automotive, aerospace, electronics and consumer applications. These include continuous fiber reinforced MMCs for cables in power transmission, high temperature superconducting wires, particulate MMCs in civilian aircraft and automotive applications, and high volume fraction, high thermal conductivity substrates for electronic packaging. The coverage is thorough and cohesive, and emphasizes the synergistic relationships among processing, structure and properties of metal matrix composites.
This book demonstrates the potential of novel in-situ experiments, performed on microscopic and macroscopic length scales, for investigating localized deformation processes in metallic materials, particularly their kinetics and the associated evolution of local strain fields. It features a broad methodological portfolio, spanning optical and electron microscopy, digital image correlation, infrared theromgraphy and acoustic emission testing, and particularly focuses on identifying the localized microscopic deformation processes in high-strength/high-ductility CrMnNi TRIP/TWIP (TRansformation Induced Plasticity/TWinning Induced Plasticity) steels. Presenting state-of-the art methodology applied to topical and pertinent problems in materials engineering, this book is a valuable resource for researchers and graduate students working in the field of plasticity and deformation of structural materials.
This book presents the latest advances in mechanical and materials engineering applied to the machining, joining and modification of modern engineering materials. The contributions cover the classical fields of casting, forming and injection moulding as representative manufacturing methods, whereas additive manufacturing methods (rapid prototyping and laser sintering) are treated as more innovative and recent technologies that are paving the way for the manufacturing of shapes and features that traditional methods are unable to deliver. The book also explores water jet cutting as an innovative cutting technology that avoids the heat build-up typical of classical mechanical cutting. It introduces readers to laser cutting as an alternative technology for the separation of materials, and to classical bonding and friction stir welding approaches in the context of joining technologies. In many cases, forming and machining technologies require additional post-treatment to achieve the required level of surface quality or to furnish a protective layer. Accordingly, sections on laser treatment, shot peening and the production of protective layers round out the book's coverage.
This book addresses the background and significance of the factors potentially influencing the clinical and biological outcomes of metal-on-metal hip implants.Metal-on-metal bearings were introduced and evaluated as an alternative to other bearing couples, particularly metal-on-polyethylene, due to their enhanced wear resistance as determined in laboratory testing.Initially, reports of short-term clinical outcomes were favorable and an increasing number of metal-on-metal prostheses were implanted. Subsequently, isolated case findings describing adverse tissue responses around the articulation became the harbinger of an increasing number of reports describing pseudotumors and other significant lymphocytic-based responses associated with metal-on-metal prostheses. Questions have been raised as to whether this is an implant, design, or patient-specific response. The reasons why some patients have a negative biological response and pathology while others do not remain to be determined, but tens of thousands of patients in the US, the UK, and around the world are considered to be at risk. Leading researchers and clinicians describe the issues related to the nature of the biological and pathological responses and the protocols that should be followed to determine if an adverse response is occurring. This book is essential reading for researchers, engineers, and orthopaedic surgeons who are involved in the design, evaluation, and implantation of metal-on-metal prostheses."
Thermochemical surface engineering significantly improves the properties of steels. Edited by two of the world's leading authorities, this important book summarises the range of techniques and their applications. It covers nitriding, nitrocarburizing and carburizing. There are also chapters on low temperature techniques as well as boriding, sheradizing, aluminizing, chromizing, thermo-reactive deposition and diffusion.
This book presents the scientific principles, processing conditions, probable failure mechanisms, and a description of reliability performance and equipment required for implementing high-temperature and lead-free die attach materials. In particular, it addresses the use of solder alloys, silver and copper sintering, and transient liquid-phase sintering. While different solder alloys have been used widely in the microelectronics industry, the implementation of sintering silver and transient liquid-phase sintering remains limited to a handful of companies. Hence, the book devotes many chapters to sintering technologies, while simultaneously providing only a cursory coverage of the more widespread techniques employing solder alloys. Addresses the differences between sintering and soldering (the current die-attach technologies), thereby comprehensively addressing principles, methods, and performance of these high-temperature die-attach materials; Emphasizes the industrial perspective, with chapters written by engineers who have hands-on experience using these technologies; Baker Hughes, Bosch and ON Semiconductor, are represented as well as materials suppliers such as Indium; Simultaneously provides the detailed science underlying these technologies by leading academic researchers in the field. |
![]() ![]() You may like...
This Is Jesus Christ - An Interactive…
Edward Kenneth Watson
Hardcover
Advances in Electrical Control and…
Gayadhar Pradhan, Stella Morris, …
Hardcover
R5,836
Discovery Miles 58 360
Burchell's Principles Of Criminal Law
Jonathan Burchell, P.J. Schwikkard, …
Paperback
Encyclopedia of Spectroscopy and…
John C. Lindon, George E. Tranter, …
Hardcover
R63,005
Discovery Miles 630 050
Physical Anti-Collision in RFID Systems…
Xiaolei Yu, Zhi-Min Zhao, …
Hardcover
R2,892
Discovery Miles 28 920
Indo-Judaic Studies in the Twenty-First…
N. Katz, R. Chakravarti, …
Hardcover
R1,536
Discovery Miles 15 360
|