![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Metals technology / metallurgy
This book outlines the basic principles of metallurgical design of flat rolled steels to obtain flat steel products with required metallurgical and mechanical properties. These principles establish the requirements for steel chemical composition and the process parameters, including steelmaking, reheating, hot rolling, annealing and cold rolling. Metallurgical Design of Flat Rolled Steels reviews the current theories and experimental works conducted in this area, and gives a comparative analysis of the obtained results in application to a large variety of steels produced around the world. This guide presents essential material in a fashion that permits rapid application to practical problems while providing the structure and understanding necessary for long-term growth. It first explains how the components fit and work together to make a successful experimental design, then analyzes each component in detail, presenting the various approaches in the form of menus of different strategies and options. Then the text illustrates equations developed by various researchers and compares them in both table and graphic forms. Written in a clear and concise manner, the material is presented using a modular or "building block" approach so readers get to see how the entire structure fits together and learn the essential techniques and terminology necessary to develop more complex designs and analyses.
Capitalizing on the rapid growth and reduced costs of laser systems, laser cladding is gaining momentum, and in some instances replacing conventional techniques of depositing thin films because it can accommodate a great variety of materials, achieve uniform thickness and precise widths of layers, and provide improved resistance to wear and corrosion in the final product. Laser cladding technology also offers a revolutionary layered manufacturing and prototyping technique that can fabricate complex components without intermediate steps. Laser Cladding reviews the parameters, techniques and equipment, process modeling and control, and the physical metallurgy of alloying and solidification during laser cladding. The authors clarify the interconnections laser cladding has with CAD/CAM design; automation and robotics; sensors, feedback, and control; physics, material science, heat transfer, fluid dynamics, and powder metallurgy to promote further development and improved process quality of this growing technology. As the first book entirely dedicated to the topic, it also offers a history of its development and a guide to applications and market opportunities. While a considerable part of Laser Cladding is dedicated to industrial applications, this volume brings together valuable information illustrated with real case studies based on the authors' vast experience, and research and analysis in the field to provide a timely source for both academia and industry.
Grain Size Control reviews significant developments in the understanding of solid state grain size control over the past half century to provide an advanced text for materials science students and practitioners. Fifty years ago, Zener had already formulated his relationship of the inhibiting influence of fine particles on grain growth. The derivation of the Zener relationship is presented here, together with the refinements that have been introduced as a result of our increased understanding of granular arrays and the importance of irregularities in such arrays. The important effects of particle size and volume fraction are illustrated with applications drawn from the author's experiences with ferrous materials. The importance of particle solubility and of Ostwald ripening is emphasised, as any inadequacy in volume fraction and particle size can lead to abnormal grain growth. Consideration is also given to the grain growth inhibiting effect of thermally etched grooves operating in thin strip foils, when free surface energy effects become more important than grain boundary energy. Exercises, accompanied by worked examples at the end of the book, are given at the end of relevant chapters to enable the reader to calculate particle requirements and how these are attained in practice.
Reviewing an extensive array of procedures in hot and cold forming, casting, heat treatment, machining, and surface engineering of steel and aluminum, this comprehensive reference explores a vast range of processes relating to metallurgical component design-enhancing the production and the properties of engineered components while reducing manufacturing costs. It surveys the role of computer simulation in alloy design and its impact on material structure and mechanical properties such as fatigue and wear. It also discusses alloy design for various materials, including steel, iron, aluminum, magnesium, titanium, super alloy compositions and copper.
Offering one of the field's most thorough treatments of material design principles, including a concise overview of fastener design, the Handbook of Mechanical Alloy Design provides an extensive overview of the effects of alloy compositional design on expected mechanical properties. This reference highlights the design elements that must be considered in risk-based metallurgical design and covers alloy design for a broad range of materials, including the increasingly important powder metal and metal matrix alloys. It discusses the design issues associated with carbon, alloy, and tool steels, microalloyed steels, and more. The Handbook of Mechanical Alloy Design is a must-have reference.
The book deals with the ancient exploitation and production of copper, exemplified by the mining district of Faynan, Jordan. It is an interdisciplinary study that comprises (mining-) archaeological and scientific aspects. The development of organizational patterns and technological improvements of mining and smelting through the ages (5th millennium BC to Roman Byzantine period), in a specific mining region, is discussed.
Metallic Materials compares and contrasts the corrosion resistance of wrought stainless steel and high nickel alloys and explores recent advances in the production of exotic metals. It emphasizes the physical and mechanical properties, corrosion resistance, workability and cost of various metals. The author analyzes the physical and mechanical properties of metals, defines relevant terminology, describes the various forms of corrosion to which metals may be susceptible, examines wrought ferrous metals, alloys, and typical applications, and covers wrought nickel and high nickel alloys. This is a handy reference for the busy engineer and student in corrosion, materials, chemical, mechanical, civil, design, process, metallurgical, manufacturing, and industrial engineering.
This book is an introductory work on the broad topics included in Materials Science. It encompasses a number of different materials classes and properties with a focus on the structure-property relationships between them. Each class of materials will include and discuss recycling techniques and other green methods of production. Materials Chemistry: For Scientists and Engineers is ideal for all newcomers to the fi eld as well as for those seeking a knowledge of solid state chemistry.
The Handbook of Aluminum: Vol. 1: Physical Metallurgy and Processes covers all aspects of the physical metallurgy, analytical techniques, and processing of aluminium, including hardening, annealing, aging, property prediction, corrosion, residual stress and distortion, welding, casting, forging, molten metal processing, machining, rolling, and extrusion. It also features an extensive, chapter-length consideration of quenching.
This book examines recent developments in inert anodes for aluminum electrolysis. It describes the composition and application of the most promising metal ceramic inert anode materials and nickel-oxide nanotechnology in the aluminum industry. The volume addresses concepts, analysis, properties, conductivity and corrosion, microstructure and microanalysis, and machinability of inert anodes for aluminum electrolysis. The book will be valuable to the aluminum industry, where inert anodes are having a profound impact in creating more energy saving, greener, and more functional aluminum materials in high-strength and high-temperature applications.
Laser cladding is an additive manufacturing technology capable of producing coatings due to the surface fusion of metals. The selected powder is fed into a focused laser beam to be melted and deposited as coating. This allows to apply material in a selected way onto those required sections of complex components. The process main properties are the production of a perfect metallurgically bonded and fully dense coatings; the minimal heat affected zone and low dilution between the substrate and filler material resulting in functional coatings that perform at reduced thickness, so fewer layers are applied; fine, homogeneous microstructure resulting from the rapid solidification rate that promotes wear resistance of carbide coatings; near net-shape weld build-up requires little finishing effort; extended weldability of sensitive materials like carbon-rich steels or nickel-based superalloys that are difficult or even impossible to weld using conventional welding processes; post-weld heat treatment is often eliminated as the small heat affected zone minimizes component stress; excellent process stability and reproducibility because it is numerical controlled welding process. The typical applications are the dimensional restoration; the wear and corrosion protection; additive manufacturing. The wide range of materials that can be deposited and its suitability for treating small areas make laser cladding particularly appropriate to tailor surface properties to local service requirements and it opens up a new perspective for surface engineered materials. The main key aspect to be scientifically and technologically explored are the type of laser; the powders properties; the processing parameters; the consequent microstructural and mechanical properties of the processed material; the capability of fabrication of prototypes to rapid tooling and rapid manufacturing. Distills critical concepts, methods, and applications from leading full-length chapters, along with the authors's own deep understanding of the material taught, into a concise yet rigorous graduate and advanced undergraduate text; Reinforces concepts covered with detailed solutions to illuminating and challenging industrial applications; Discusses current and future applications of laser cladding in additive manufacturing.
This book provides a detailed explanation of the cold spray process from a practical standpoint. Drawing on the authors' 36 years of research and development experience, it is firmly rooted in theory but also substantiated by empirical data and practical knowledge, offering potential users the information they need to recognize the advantages, as well as the limitations, of cold spray. This sets it apart from previous works on the subject, which have been purely academic. Cold spray technology has made great dramatic strides over the last 10 years and is now being used extensively in the aerospace, electronics, automotive, medical, and even the petrochemical industries. Most recently, cold spray of near-net shaped parts was accomplished - something previously assumed to be impossible because of the limitations of commercially available cold spray systems and a lack of fundamental understanding regarding the process. The cost of cold spray has also declined, making it appealing to industry through the introduction of new powders, surface preparation techniques, and recovery systems tailored to the cold spray process. Though primarily intended for users of the technology, this handbook is also a valuable resource for researchers interested in advances in cold spray materials, improved feedstock powders, advanced hardware and software development, surface preparation techniques, and the numerous applications developed to date. For example, cold spray aluminum alloys have been developed that offer the strength and ductility of wrought material in the as-sprayed condition. This has yet to be achieved by conventional powder consolidation methods including laser sintering, electron beam, and ultrasonic techniques. Other topics covered include additive manufacturing, structural repair, nondestructive evaluation, advanced cold spray materials, qualification requirements, cold spray systems comparison, and, finally, helium recovery. Thanks to its practical focus, the book provides readers with everything they need to understand, evaluate, and implement cold spray technology.
This highly practical reference presents for the first time in a single volume all types of environmental degradation a metallic compound may undergo during its processing, storage, and service. Clarifying general and localized corrosion effects, Environmental Degradation of Metals describes the effects of atmospheric exposure, high-temperature gases, soil, water, weak and strong chemicals, liquid metals, and nuclear radiation. It determines whether corrosion can occur under a given set of conditions, shows how improvements in component design can reduce corrosion, and details the high- and low-temperature effects of oxidizing agents. The book also investigates the instantaneous and delayed failure of solid metal in contact with liquid metal, highlights the influence of hydrogen on metal, and profiles radiation effects on metal.
In this book, the authors cover the recent progress in the synthesis, characterization and application of various multi-layered carbides, carbonitrides and nitrides. Moreover, the processing and development of MXene-based composites are elaborated, focusing on their applications and performances as transparent conductors in environmental remediation and energy storage systems.
This book outlines the physical and chemical foundations of high-temperature processes for producing silicon, manganese and chromium ferroalloys, alloys of molybdenum, vanadium, titanium, alkaline earth and rare earth metals, niobium, zirconium, aluminum, boron, nickel, cobalt, phosphorus, selenium and tellurium, iron-carbon alloys by carbon, silicone and aluminothermic methods. The chapters introduce the industrial production technologies of these groups of ferroalloys, the characteristics of charge materials, and the technological parameters of the melting processes. A description of ferroalloy furnaces is given in detail. Topics such as waste recycling, fines agglomeration technologies, and environmental issues are considered.
This book evaluates the latest developments in nickel alloys and high-alloy special stainless steels by material number, price, wear rate in corrosive media, mechanical and metallurgical characteristics, weldability, and resistance to pitting and crevice corrosion. Nickel Alloys is at the forefront in the search for the most economic solutions to chemical equipment construction, power station engineering and high-temperature technology.
This book focuses on how to keep blast furnaces running stably and smoothly with low consumption and long operating life spans. Assessing and adjusting blast furnace performance are key to operation. The book describes in detail cases of both successful and failed blast furnace operation. It also demonstrates various phenomena and "symptoms" in the smelting process that have rarely been studied before, e.g. abnormal gas distribution, bending loss of tuyere, slag crust fall-off, blast furnace thickening, and hearth accumulation. As such, it will help readers understand internal phenomena in blast furnaces, providing a basis for developing intelligent control and management systems.
Continuous casting of non-ferrous metals has been practised for well over 100 years. It has many advantages over static ingot and book mould casting, the most important being improved yield, reduced energy consumption and reduction of manpower, with a consequent reduction in cost. This book shows how the prrocess can be used in an engineering environment for casting a wide range of copper based alloys and precious metals, including gold and silver, and selected nickel alloys.
The Metals Handbook Desk Edition is a comprehensive single-volume reference source on the properties, selection, processing, testing, and characterization of metals and their alloys. Although the information presented in this Volume is drawn principally from the multiple-volume ASM Handbook series, it should not be considered simply an abridged version of the larger work. Instead, the Metals Handbook Desk Edition draws upon the complete arsenal of ASM products-both print and electronic-as well as other key sources of information originating from other publications, company literature, technical societies, and government agencies. Coverage is organized into five major parts: General Introduction Irons, Steels, and High-Performance Alloys Nonferrous Alloys and Special-Purpose Materials Processing Testing, Inspection, and Materials Characterization
Focusing on the uses of lead in pure or alloy form for engineering applications, this text presents data on the physical, mechanical, corrosive, accoustic, damping and nuclear properties of lead and lead alloys. It organizes information according to alloy type in tables, graphs and text, and examines the processing of commercially available lead products, including casting, rolling, extrusion, machining, welding and mechanical joining techniques.
This book comprises selected papers from the Fourth International Conference on Materials and Manufacturing Engineering (ICMME 2019). The contents focus on the latest developments in the synthesis and characterization of new materials, and highlights the challenges involved in the manufacturing and machinability of different materials. Advanced and cost-effective manufacturing processes and their applications are also discussed in the book. In addition, it covers topics like robotics, fluid dynamics, design and development, and different optimization techniques. The contents of this book will be beneficial to students, researchers, and industry professionals. |
![]() ![]() You may like...
United States Circuit Court of Appeals…
United States Court of Appeals
Paperback
R750
Discovery Miles 7 500
|