![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Metals technology / metallurgy
This book starts with an extended introductory treatise on the fundamentals before moving on to a detailed description of the new methods of purification of transition metals and rare earth metals.
The merging of the concept of introduction of asymmetry of the wave vector space of the charge carriers in semiconductors with the modern techniques of fabric- ing nanostructured materials such as MBE, MOCVD, and FLL in one, two, and three dimensions (such as ultrathin ?lms, nipi structures, inversion and accumu- tion layers, quantum well superlattices, carbon nanotubes, quantum wires, quantum wire superlattices, quantumdots, magnetoinversionand accumulationlayers, qu- tum dot superlattices, etc. ) spawns not only useful quantum effect devices but also unearth new concepts in the realm of nanostructured materials science and related disciplines. It is worth remaking that these semiconductor nanostructures occupy a paramount position in the entire arena of low-dimensional science and technology by their own right and ?nd extensive applications in quantum registers, resonant tunneling diodes and transistors, quantum switches, quantum sensors, quantum logic gates, heterojunction ?eld-effect, quantum well and quantum wire trans- tors, high-speed digital networks, high-frequency microwave circuits, quantum cascade lasers, high-resolution terahertz spectroscopy, superlattice photo-oscillator, advanced integrated circuits, superlattice photocathodes, thermoelectric devices, superlattice coolers, thin ? lm transistors, intermediate-band solar cells, micro- tical systems, high-performanceinfrared imaging systems, bandpass ?lters, thermal sensors, optical modulators, optical switching systems, single electron/molecule electronics, nanotube based diodes, and other nanoelectronic devices.
Microcluster Physics provides a lucid account of the fundamental physics of all types of microclusters, outlining the dynamics and static properties of this new phase of matter intermediate between a solid and a molecule. Since originally published in 1991, the field of microclusters has experienced surprising developments, which are reviewed in this new edition: The determination of atomic structure, spontaneous alloying, super-shell, fission, fragmentation, evaporation, magnetism, fullerenes, nanotubes, atomic structure of large silicon clusters, superfluidity of a He cluster, water clusters in liquid, electron correlation and optimizsation of the geometry, and scattering.
In this, the only book available to combine both theoretical and practical aspects of x-ray diffraction, the authors emphasize a "hands on" approach through experiments and examples based on actual laboratory data. Part I presents the basics of x-ray diffraction and explains its use in obtaining structural and chemical information. In Part II, eight experimental modules enable the students to gain an appreciation for what information can be obtained by x-ray diffraction and how to interpret it. Examples from all classes of materials -- metals, ceramics, semiconductors, and polymers -- are included. Diffraction patterns and Bragg angles are provided for students without diffractometers. 192 illustrations.
"High Performance Grinding and Advanced Cutting Tools" discusses the fundamentals and advances in high performance grinding processes, and provides a complete overview of newly-developing areas in the field. Topics covered are grinding tool formulation and structure, grinding wheel design and conditioning and applications using high performance grinding wheels. Also included are heat treatment strategies for grinding tools, using grinding tools for high speed applications, laser-based and diamond dressing techniques, high-efficiency deep grinding, VIPER grinding, and new grinding wheels.
An uncomfortable observation in the Shift Logs and Process Control records of most aluminum smelting plants is that process control failures, large and small, happen every day. Although only a small fraction of these failures give rise to catastrophic events, the difference between a disaster we read about and a failure which, although expensive, has no irreversible consequences, is only chance. Control for Aluminum Production and Other Processing Industries exemplifies new control thinking fused with an understanding of process variability, and how to diagnose abnormalities and their causes in aluminum production plants. Many real life examples in the book demonstrate the importance of human behavior and a scientific, questioning approach in the control of a technologically complex process. Written from the perspective of production staff and management, the book also gives readers a view into the human aspects of accidents and their analogy with failures in control of production. Production plants regularly experience more control failures than successes and staff must continuously strive to establish stability and control of their process. Through on-the-job experiences of the authors and their industry colleagues, the control experiences described in this book provide readers with a foundation for building their own robust control rationale and a framework for avoidance of plant control problems.
Thisbookiswrittenforthosescientistsandengineerswhowishtounderstand the synthesis, physical and chemical properties, and applications of inorganic and metallic nanotubular materials. The original version of this book, written inJapanese,coveredthoseoforganic,inorganic,andmetallicnanotubular- terials or almost all the other nanotubular materials than carbon nanotubes. This English version is concerned with only the chapters of inorganic and metallic nanotubular materials. In most industries worldwide, recent attention is unexceptionally focused on the research and development of highly functional new materials or te- nologies leading to energetically highly e?cient activities. Nanotubular - terials are one of the materials with such technological potentials because of their nano-sized unique structures available, for example, functionalization at their internal and external surfaces. In 1991, Dr. S. Iijima discovered a tu- lar material of carbon and named it carbon nanotubes. Since then, worldwide attention has been focused on the basic and functional properties of the novel materials and in more recent times the research phase has developed into an advanced stage based on strategic researches toward various applications. Carbon nanotubes have thus become synonymous with nanotubular materials and still more a symbol of nanotechnology because of their unique, valuable, and versatile properties.
Powder metallurgy literature in the English language includes a large number of books and several thousand articles in various journals. The rate of growth of this literature increases from year to year. It covers well the whole field of powder metallurg- materials, processes and products - with two exceptions: friction and antifriction branches of powder metallurgy. This lack of information has nothing to do with scientific or technical considerations, and definitely has nothing to do with lack of initiative in the development of these materials. The industry concerned with the production of friction and antifriction materials is continually developing new products and techniques and produc tion is steadily growing. However, most companies working on these materials regard their experiences and new advancements as "proprietary" and, for competitive reasons, are not interested in publishing in the technical literature except for very perfunctory and usually highly commercial papers. Very little work on fric tion and antifriction materials is going on in independent labora tories and university laboratories, although fundamental studies in this field offer very interesting aspects.
This book is the proceedings of a Symposium entitled "The Physics of Solid-Solution Strengthening in Alloys" which was held at McCormick Place, Chicago, on October 2, 1973, in association with a joint meeting of the American Society for Metals (ASM) and The Metallurgical Society (TMS) of the American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME). The symposium, which was initiated and organized by the editors of this volume, was sponsored by the Committee on Alloy Phases, Institute of Metals Division, TMS, AIME, and the Flow and Fracture Section of the Materials Science Division, ASM. The discipline of Alloy Design has been very active in recent years, during which considerable stress has been placed on the roles of crystallography and microstructure in the rationalization and prediction of properties. Underestimated as a component of alloy design, however, has been the importance of physical property studies, even though physical property measurements have tradi tionally been employed to augment direct or x-ray observations in the determination of phase equilibrium (and, indeed, metastable equilibrium) boundaries."
A conference on Metallurgical Effects at High Strain Rates was held at Albuquerque, New Mexico, February 5 through 8, 1973, under joint sponsorship of Sandia Laboratories and the Physical Metallurgy Committee of The Metallurgical Society of AIME. This book presents the written proceedings of the meeting. The purpose of the conference was to gather scientists from diverse disciplines and stimulate interdisciplinary discussions on key areas of materials response at high strain rates. In this spirit, it was similar to one of the first highly successful con ferences on this subject held in 1960, in Estes Park, Colorado, on The Response of Metals to High Velocity Deformation. The 1973 conference was able to demonstrate rather directly the increased understanding of high strain rate effects in metals that has evolved over a period of roughly 12 years. In keeping with the interdisciplinary nature of the meeting, the first day was devoted to a tutorial session of invited papers to provide attendees of diverse backgrounds with a common basis of understanding. Sessions were then held with themes centered around key areas of the high strain rate behavior of metals."
The International Symposium on Shape Memory Effects and Appli cations was held at the University of Toronto on May 19-20, 1975, in four sessions over two days, as part of the regular 1975 Spring Meeting of The Metallurgical Society of AlME, sponsored by the Physical Metallurgy Committee of The Metallurgical Society. This was the first symposium on the subject, the only previous meeting at all related being the 1968 NOL Symposium on TiNi and Associated Compounds. One of the major intentions of this Symposium was to provide a forum for cross-communication between workers in the diverse metallurgical areas pertinent to shape memory effects, areas such as martensitic transformation, crystallography and thermodynamics, mechanical behavior, stress-induced transformation, lattice sta bility, and alloy development. Authors were encouraged to place an emphasis on delineation of general controlling factors and mech anisms, and on comparison of shape memory effect alloy systems with systems not exhibiting SME."
The focus of this thesis is the computational modelling of transition metal bimetallic (nanoalloy) clusters. More specifically, the study of Pd-Pt, Ag-Pt, Au-Au and Pd-Au as a few tens of atoms in the gas phase. The author used a combination of global optimization techniques - coupled with a Gupta-type empirical many-body potential - and Density Functional Theory (DFT) calculations to study the structures, bonding and chemical ordering, as well as investigate the chemisorptions of hydrogen and carbon monoxide on bimetallic clusters. This research is highly relevant to experimental catalytic studies and has resulted in more than seven publications in international journals.
Corrosion affects every industry in which metal is involved, from manufacturing machinery to transport pipelines, and it is estimated to cost the global economy trillions of dollars per year. Many of the traditional methods for inhibiting corrosion are highly toxic (such as hexavalent chromium) or do not degrade readily in the environment (such as Benzotriazole) meaning they pose a risk to human and environmental health. Much recent work in the area has gone into searching for greener alternatives that will be both safe and effective. Beginning with a look at the fundamentals of corrosion inhibition and an explanation of the concepts of green chemistry, this book discusses various types of chemical that have been tested for their potential as greener corrosion inhibitors with reference to industrial applications. Green Corrosion Inhibition is a valuable reference for chemists and chemical engineers working in both research and design and academia who want to learn more about green corrosion inhibitors, their synthesis, design, and industrial scale applications.
Five years ago, the worldwide powder metallurgy fraternity gathered in New York City to attend the first international conference devoted entirely to powder metal lurgy to take place in the United States. It was a tentative venture, entered into by the sponsors with no idea as to whether it would fail or succeed. The only assurances we had were that the metal-powder producing and consuming industries were rapidly expanding and that powder metallurgy was truly becoming one of the international sciences. The 1960 Conference was successful not only in terms of attendance and interest, but also in terms of knowledge gained. The literature had been enriched by the contributions of its participants to foster and encourage this type of world wide exchange. Thus, another such conference was held in 1965-expanded in scope and supplemented by an exhibition of the latest advances in raw materials, processing equipment, and finished products of powder metallurgy. On behalf of the Conference sponsors-the Metal Powder Industries Federa tion, the American Powder Metallurgy Institute, and the Metallurgical Society of AIME-I thank all those who participated and who helped make the 1965 Interna tional Powder Metallurgy Conference a rewarding experience and memorable event in our industry's history. Support of the National Science Foundation, which made it possible for several speakers from abroad to participate in the program, is gratefully acknowledged.
In view of the dramatically increased interest in the study of grain boundaries during the past few years, the Physical Metal lurgy Committee of The Institute of Metals Division of The Metal lurgical Society, AIME, sponsored a four-session symposium on the NATURE AND BEHAVIOR OF GRAIN BOUNDARIES, at the TMS-AIME Fall Meeting in Detroit, Michigan, October 18-19, 1971. The main ob jectives of this symposium were to examine the more recent develop ments, theoretical and experimental, in our understanding of grain boundaries, and to stimulate further studies in these and related areas. This volume contains most of the papers presented at the Symposium. It is regrettable that space limitations allow the inclusion of only four of the unsolicited papers, in addition to thirteen invited papers. The papers are grouped into three sections according to their major content: STRUCTURE OF GRAIN BOUNDARIES, ENERGETICS OF GRAIN BOUNDARIES, and GRAIN BOUNDARY MOTION AND RELATED PHENOMENA. Grain boundaries, or crystal interfaces, have been of both academic and practical interest for many years. An early seminar on "Metal Interfaces" was documented in 1952 by ASM. The Fourth Metallurgical Colloquium held in France, 1960, had a broad coverage on "Properties of Grain Boundaries". More recently the Australian Institute of Metals sponsored a conference on interfaces, with the proceedings being published by Butterworths in 1969.
This volume entitled Advanced Science and Technology of Sintering, contains the edited Proceedings of the Ninth World Round Table Conference on Sintering (IX WRTCS), held in Belgrade, Yugoslavia, September 1-4 1998. The gathering was one in a series of World Round Table Conferences on Sintering organised every four years by the Serbian Academy of Sciences and Arts (SASA) and the International Institute for the Science of Sintering (IISS). The World Round Table Conferences on Sintering have been traditionally held in Yugoslavia. The first meeting was organised in Herceg Novi in 1969 and since then they have regularly gathered the scientific elite in the science of sintering. It is not by chance that, at these conferences, G. C. Kuczynski, G. V. Samsonov, R. Coble, Ya. E. Geguzin and other great names in this branch of science presented their latest results making great qualitative leaps in the its development. Belgrade hosted this conference for the first time. It was chosen as a reminder that 30 years ago it was the place where the International Team for Sintering was formed, further growing into the International Institute for the Science of Sintering. The IX WRTCS lasted four days. It included 156 participants from 17 countries who presented the results of their theoretical and experimental research in 130 papers in the form of plenary lectures, oral presentations and poster sections.
Atomic diffusion in metals was first discovered some sixty-five years ago, and since then a considerable wealth of data has ac cumulated on diffusion in various systems. However, work prior to about the year 1940 is now mainly of historical interest, since ex periments were often carried out under experimental conditions and with methods of analysis leading to uncertainties in inter preting the measured diffusion coefficients. Data on diffusion rates are of importance in processes which are controlled by rates of atomic migration such as growth of phases and homogenization of alloys. In addition diffusion plays an important part in theories of such phenomena as oxidation, plastic deformation, sintering, and creep. A tremendous advance in diffusion studies was made possible by the availability of radioactive isotopes of sufficiently high spe cific activity after the second world war. Measurements of self diffusion rates then became possible using radioactive isotopes having the same chemical properties as the solvent material, and it also became possible to study tracer impurity diffusion when the concentration of the impurity is so small as not to alter the chemi cal homogeneity of the system. In the last ten to fifteen years the purity of materials used in diffusion studies has increased con siderably and the methods of analysis have become more stand ardized."
During the translation, the author had the opportunity to re view several chapters, taking into consideration the more recent literature. As far as possible all new theoretical concepts and experi mental data published before 1963 have been quoted and discussed under the theoretical viewpoint of this book. A new chapter "Passivity and Inhibition During High-Tempera ture Oxidation" was introduced. Section 4.8 was enlarged by a dis cussion of the transition from internal to external oxidation. The author very much appreciates the cooperation of the trans lator and of Plenum Press. Gottingen, April 1.965 Karl Hauffe v Preface The number of publications concerned with oxidation and cor rosion processes has become so copious that many engineers and scientists find it practically impossible to obtain an overall view of the growing body of knowledge and to bring order to the confusing multiplicity of experimental data. As a result the need for a compre hensive survey of the present state of research in this field has be come more and more urgent."
Aluminum P/M parts can be production sintered in various types of furnaces and atmospheres. Selection of sintering furnace depends upon economic considerations and production rates desired. Batch furnaces have lowest investment costs and are adequate for low to medium production whereas continuous furnaces are more costly but provide higher production rates. strong, well-sintered P/M parts can be obtained in atmos pheres of nitrogen, dissociated ammonia and in vacuum. Atmos phere selection depends upon facilities available within individual plants plus property requirements. Highest strengths are produced in nitrogen followed by vacuum and dissociated ammonia. Repro ducible dimensions can be achieved with proper attention to com pact density, sintering temperature, dew point and atmosphere. REFERENCES 1. J. H. Dudas and W. A. Dean, "'llie Production of Precision Aluminum P/M Parts," International Journal of Powder Metallurgy, Vol. 5, April, 1969. 2. P. F. Mathews, "Effects of Processing Variables on the Properties of Sintered Aluminum Compacts,!! International Journal of Powder Metallurgy, Vol. 4, October, 1968. 3. J. H. Dudas and K. J. Brondyke, "Aluminum P/M Parts - Their Properties and Performance,!! Technical Paper No. 700141, Society of Automotive Engineers, Inc., Two Pennsylvania Plaza, New York, New York, 10001. 4. K. R. Van Horn (Editor), Aluminum Vol. I, pp. 26-28, American Society for Metals, Metals Park, Ohio, 1967.
Here is the first book to discuss the current understanding of silver metallization and its potential as a future interconnect material for integrated circuit technology. With the lowest resistivity of all metals, silver is an attractive interconnect material for higher current densities and faster switching speeds in integrated circuits. Over the past ten years, extensive research has been conducted to address the issues that have prevented silver from being used as an interconnect metal. The authors provide details on a wide range of experimental, characterization, and analysis techniques. The book is written for students, scientists, engineers, and technologists in the fields of integrated circuits and microelectronics research and development.
Sintering of powder metal compacts is one of the basic oper ations in powder metallurgy. The useful properties of a machine part are obtained after considerable densification of the sintered material. Although the mechanical properties of the part depend on other structural factors besides porosity, porosity is the main factor. Usually, the practical problem in sintering is to obtain a part with the desired or permissible porosity. Thus, knowledge of the laws governing densification and its final result is neces sary to control this process in the production of powder metal parts. The laws governing densification are also important for a more exact physical theory of sintering, which is still in the initial stages of its development. Such processes as the change in the density of lattice defects and the flow of crystalline substances during sintering have not yet received a complete physical inter pretation. Analysis of the laws of sintering may provide addition al material for more complete phenomenological characteristics of these processes that will be useful for further development of theoretical concepts of the flow of imperfect crystals under small loads. Although a substantial amount of experimental material has been accumulated, generalizations are still difficult.
Since the introduction of the first commercial inductively coupled plasma mass spectrometry (ICP-MS) instruments in 1983, the technique has gained rapid and wide acceptance in many analytical laboratories. There are now well over 400 instruments installed worldwide, which are being used in a range of disciplines for the analysis of geological, environmental, water, medical, biological, metallurgical, nuclear and industrial samples. Experience oflCP-MS in many laboratories is limited, and there is therefore a need for a handbook containing practical advice in addition to fundamental informa tion. Such a handbook would be useful not only to users new to the technique, but also to users with some experience who wish to expand their knowledge of the subject. Therefore we have written this book for users in a variety of fields with differing levels of experience and expertise. The first two chapters provide a brief history of ICP-MS and discussions of design concepts, ICP physical processes, and fundamental principles of instrument operation. Armed with this background knowledge, users will be better equipped to evaluate advantages and limitations of the technique. Detailed descriptions and information for instrumental components are provided in chapter 3. Subsequent chapters deal with the practical aspects of sample analysis by ICP-MS. Whether samples are to be analysed in liquid, solid .or gaseous form is always an important consideration, and there is a wide choice of sample introduction techniques."
Semisolid metallurgy (SSM) is now some 37-years-old in terms of time from its conception and ?rst reduction to practice in the laboratory. In the intervening years, there has been a steadily growing body of research on the subject and the beginning of signi?cant industrial applications. The overall ?eld of SSM comprises today a large number of speci?c process routes, almost all of which fall in the category of either "Rheocasting" or Thi- casting." The former begins with liquid metal and involves agitation during partial solidi?cation followed by forming. The latter begins with solid metal of suitable structure and involves heating to the desired fraction solid and forming. Research over the past 37 years, and particularly over the last decade, has provided a detailed picture of process fundamentals and led to a wide range of speci?c SSM processes and process innovations. Industrial studies and actual p- duction experience are providing a growing picture of the process advantages and limitations. At this time, the conditions for eventual wide adoption of SSM appear favorable, both for nonferrous and ferrous alloys. It must, however, be recognized that major innovations, such as SSM become adopted only slowly by industries where capital costsarehigh,pro?tmarginsaremodest,andfailuretomeetcustomercommitments carries a high penalty. |
![]() ![]() You may like...
Yoga Gym - The Revolutionary 28 Day…
Nicola Jane Hobbs
Paperback
![]()
|