![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Metals technology / metallurgy
Mihai Stoica investigates in details the glass formation of two model alloys, [(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4 and Fe74Mo4P10C7.5B2.5Si2. More than 20 master alloys using different raw materials were prepared. Besides the typical calorimetry and X-Ray diffraction, magnetic measurements were employed to analyze the amorphicity degree of the sample. Two new bulk metallic glass-forming alloy compositions are designed and possible preparation routes are proposed.
The Laser Cutting Process: Analysis and Applications presents a comprehensive understanding of the laser cutting process and its practical applications. The book includes modeling, such as thermal and stress analysis, along with lamp parameter analysis for kerf width predictions and their practical applications, such as laser cutting of metallic and non-metallic materials and assessment of quality. The book provides analytical considerations for laser cutting, the importance of the affecting parameters, stress levels formed in the cutting section, cutting efficiency and cut morphology and metallurgy. It is designed to be used by individuals working in laser machining and high energy processing.
This book guides readers through the systematic analysis of Arc Spraying: one of the most widespread and important thermal spraying methods. Along the way, readers from industry and research laboratories become familiar with the features of the process and physical-chemical regulations of particles in flight, coating formation, internal coating properties, and their output parameters. The book is ideal for engineers, technicians, and scientists engaged in welding and thermal spraying and stands as an excellent reference for students interested in advanced coatings technology.
This monograph provides a field-proven approach to analyze industrial production with a cross-company scope as well as regarding all hierarchical system levels of manufacturing enterprises. The book exemplifies this approach in the context of aluminum die casting, and presents a set of measures which allow a 30 percent energy reduction along the value chain. The target audience primarily comprises researchers and experts in the field but the book may also be beneficial for graduate students.
This book deals with the properties and behavior of carbon at high temperatures. It presents new methods and new ways to obtain the liquid phase of carbon. Melting of graphite and the properties of liquid carbon are presented under stationary heat and pulse methods. Metal like properties of molten graphite at high initial density are indicated. A new possible transition of liquid carbon from metal to nonmetal behavior much above the melting point is mentioned. Methodical questions of pulse heating, in particular the role of pinch-pressure in receiving a liquid state of carbon, are discussed. The reader finds evidence about the necessity of applying high pressure (higher than 100 bar) to melt graphite (melting temperature 4800+/-100 K). The reader can verify the advantage of volume pulse electrical heating before surface laser heating to study the physical properties of carbon, including enthalpy, heat capacity, electrical resistivity and temperature. The advantages of fast heating of graphite by pulsed electric current during a few microseconds are shown. The data obtained for the heat capacity of liquid carbon under constant pressure and constant volume were used to estimate the behavior at temperatures much higher 5000 K.
The book covers all types of advanced high strength steels ranging from dual-phase, TRIP. Complex phase, martensitic, TWIP steels to third generation steels, including promising candidates as carbide free bainitic steels, med Mn and Quenching & Partitioning processed steels. The author presents fundamentals of physical metallurgy of key features of structure and relationship of structure constituents with mechanical properties as well as basics of processing AHSS starting from most important features of intercritical heat treatment, with focus on critical phase transformations and influence of alloying and microalloying. This book intends to summarize the existing knowledge to show how it can be utilized for optimization and adaption of steel composition, processing, and for additional improvement of steel properties that should be recommended to engineering personal of steel designers, producers and end users of AHSS as well as to students of colleges and Universities who deal with materials for auto industry.
The aim of this book is to present foundational research on the nano-crystallization, high-temperature modification, micro-structure evolution and plastic deformation induced by laser shock processing. In this regard, the focus is on heat-resistant steel, aluminum alloy, Ti alloys and Ni-based alloys, offering valuable scientific insights into the industrial applications of laser shock processing (LSP) technology. The book addresses various topics, i.e., the formation mechanism and productivity improvement of nano-crystalline diamond by laser processing, the surface integrity and fatigue lives of heat-resistant steels, Ti alloys and Ni-based alloys after LSP with different processing parameters, tensile properties and fractural morphology after LSP at different temperatures, strain-rates and grain refinement mechanisms based on the micro-structure evolution. Moreover, the effect of heating temperature and exposure time on stress thermal relaxation and the influence of compressive stress on the stress intensity factor of hole-edge cracks by high strain rate laser shock processing are also analyzed. A new type of statistical data model to describe the fatigue cracking growth with limited data is proposed based on the consideration of the effects of fracture growth on the reliability and confidence level. This book is intended for researchers, engineers and postgraduates in the fields of nanotechnology and micro-engineering who are interested in the partial or overall strengthening of materials, especially those with a focus on surface integrity and fatigue life.
This book presents selected research papers of the AIMTDR 2014 conference on application of laser technology for various manufacturing processes such as cutting, forming, welding, sintering, cladding and micro-machining. State-of-the-art of these technologies in terms of numerical modeling, experimental studies and industrial case studies are presented. This book will enrich the knowledge of budding technocrats, graduate students of mechanical and manufacturing engineering, and researchers working in this area.
This book provides a detailed description and analysis of the reduction and metabolism of metals and metalloids by sulfate reducing bacteria. The molecular mechanisms of bacterial resistance to copper are examined as well as extracellular electron transfer and bacterial metal oxide respiration. Furthermore, in this book enrichment, isolation, and physiology of magnetotactic bacteria are discussed. The interactions of bacteria with metals in natural environments and their role in metal cycling have been studied for decades. Advances in studies of bacteria-metal interactions identified numerous important aspects of these interactions, such as bioremediation of metal-contaminated environments, the role of metals in redox reactions and other cellular functions, as well as the role of metals in toxicity and infection. Microbiologists, environmental scientists, and students interested in microbe interactions with metals and their effect on the environment and their application in biotechnology will be interested in the topics discussed in the book.
This volume by Michael SchA1/4tze, a world leader in this area of research, is the first volume to be published in the series. The formation of oxide layers is one of the most important areas of corrosion science and the author brings together for the first time in an English language text, work which has, until now, remained scattered. Contents: Basic Requirements for the Protective Action of Oxide Scales; Development of Oxide Scales in High Temperature Technology; Mechanical Stresses in Oxide Scales and their Causes; Deformation Behaviour and Deformation Mechanisms in Oxides; Damage to the Oxide Scale Resulting from Mechanical Stresses; Healing of Oxide Scale Damage; Depletion by Oxidation and Crack Healing of Alloying Elements forming Protective Scales. This book is invaluable for researchers working on the formation and behaviour of oxide layers, for those working on the storage, transport and use of corrosive materials and for industrial chemists, engineers, defence and materials scientists. The Institute of Corrosion and Wiley Series on Corrosion and Protection provides compelling volumes on the science and engineering technology of corrosion and protection. The volumes cover the whole range of knowledge and experience in the field from basic teaching texts at the undergraduate or practising technologist level to state-of-the-art volumes for postgraduates and experienced corrosion engineers. All volumes in the series are reviewed and endorsed by the Institute of Corrosion ensuring their accuracy and technical excellence are to the highest standard.
Iron catalysts in organic synthesis are strongly in demand because iron is non-toxic, inexpensive and the most abundant transition metal in the earth, although their use is still limited compared with that of rare, precious metals such as palladium, ruthenium and rhodium. This thesis describes the first practical example of iron catalysis in the carbon–hydrogen bond activation reaction to synthesized fused aromatic ring compounds. By using a unique combination of iron catalyst and dichloride oxidant, various kind of naphthalene and phenanthrene derivatives were synthesized via annulation reaction with alkynes including direct C–H bond activation process. This achievement opens the new possibility of low-valent iron catalysis and expands synthetic methods for a sustainable society.
This book details the design for creation of metal nanomaterials with optimal functionality for specific applications. The authors describe how to make desired metal nanomaterials in a wet lab. They include an overview of applications metal nanomaterials can be implemented in and address the fundamentals in the controlled synthesis of metal nanostructures.
Magnetic nanoparticles (NPs) are finding their place in many modern technologies such as electronics (memory or spintronic devices) and medicine (contrast media, electromagnetic thermal therapy) to name just a few examples. The application of modern techniques based on synchrotron radiation, in particular X-ray spectroscopies, as well as an rf transverse susceptibility probe, built ad hoc, allowed the author to investigate several classes of magnetic NPs with diverse applications. For example, the interesting anisotropic properties of CoW and CoPt NPs revealed new magnetic behaviour and phases. Gold NPs prepared on a biological template from Sulfolobus acidocaldarius S-layer, were shown to possess intrinsic magnetism caused by the electron exchange with the sulfur atoms of the template. Silica and oleic acid coated magnetite NPs showed excellent human compatibility while preserving the bulk magnetic figures of merit. Both macroscopic and microscopic properties of all these NPs, hitherto unexplained, have been revealed for the first time.
The 3rd edition of this popular textbook covers current topics in all areas of casting solidification. Partial differential equations and numerical analysis are used extensively throughout the text, with numerous calculation examples, to help the reader in achieving a working knowledge of computational solidification modeling. The features of this new edition include: * new chapters on semi-solid and metal matrix composites solidification * a significantly extended treatment of multiscale modeling of solidification and its applications to commercial alloys * a survey of new topics such as solidification of multicomponent alloys and molecular dynamic modeling * new theories, including a theory on oxide bi-films in the treatment of shrinkage problems * an in-depth treatment of the theoretical aspects of the solidification of the most important commercial alloys including steel, cast iron, aluminum-silicon eutectics, and superalloys * updated tables of material constants.
This book provides an insight into current research topics, focusing special attention exactly on welding issues. The presented research work demonstrates that application of synchrotron and neutron radiation in combination with other techniques enables the basic understanding of material-related processes to be extended appreciably. It also shows ways of how to improve new materials and their use in industry. Following on from the 1st workshop in 2009 at BAM Berlin, a 2nd workshop dealing with this subject matter was held in 28-30 November, 2012 in Osaka/Japan with international participation of scientists from sixteen countries. The book includes selected contributions from the various subject blocks, precisely covering issues of practical and immediately implementable benefit to industrial enterprises. Therefore, peer-reviewed papers dealing with the following topics are contained as well: - Phase transformation during welding, metallurgy and material development - Evolution and significance of residual stresses - Investigations into laser and electron beam welding
This book gives detailed information about the fabrication, properties and applications of nanoporous alumina. Nanoporous anodic alumina prepared by low-cost, simple and scalable electrochemical anodization process due to its unique structure and properties have attracted several thousand publications across many disciplines including nanotechnology, materials science, engineering, optics, electronics and medicine. The book incorporates several themes starting from the understanding fundamental principles of the formation nanopores and theoretical models of the pore growth. The book then focuses on describing soft and hard modification techniques for surface and structural modification of pore structures to tailor specific sensing, transport and optical properties of nano porous alumina required for diverse applications. These broad applications including optical biosensing, electrochemical DNA biosensing, molecular separation, optofluidics and drug delivery are reviewed in separated book chapters. The book appeals to researchers, industry professionals and high-level students.
This book covers recent research and trends in Manufacturing Engineering. The chapters emphasize different aspects of the transformation from materials to products. It provides the reader with fundamental materials treatments and the integration of processes. Concepts such as green and lean manufacturing are also covered in this book.
This book covers the Resistivity Recovery (RR) technique, underlying its physical principles, performance and problematic. A concise review on the state of the art is provided, showing the advances in radiation modelling, linking both experimental and theoretical fields. The reader will find a data compilation and comparison of up-to-date results obtained from the European Fusion Development Agreement model alloys.
This thesis consists of an in-depth study of investigating microstructure-property relationships in bulk metallic glasses using a novel quantitative approach by which influence of the second phase features on mechanical properties can be independently and systematically analyzed. The author evaluates and optimizes the elastic and plastic deformation, as well as the overall toughness of cellular honeycombs under in-plane compression and porous heterostructures under uniaxial tension. The study reveals three major deformation zones in cellular metallic glass structures, where deformation changes from collective buckling showing non-linear elasticity to localized failure exhibiting a brittle-like deformation, and finally to global sudden failure with negligible plasticity as the length to thickness ratio of the ligaments increases. The author found that spacing and size of the pores, the pore configuration within the matrix, and the overall width of the sample determines the extent of deformation, where the optimized values are attained for pore diameter to spacing ratio of one with AB type pore stacking.
With China becoming a major force in steel research and development, this book highlights the work of a group from the Chinese Academy of Sciences, led by the first four authors. This group has the ideal knowledge base for writing this updated book on heat-resistant steels. The fifth author, Sha, based in the UK, has been collaborating with the Chinese group since 2009 and is the lead or sole author of four research books, all published in English. The last book, “Steels: from materials science to structural engineering,” was published by Springer in 2013. Within two months of its publication, researchers at the University of Science and Technology Liaoning had requested translation of the book into Chinese. Springer obliged, and the Chinese version was published by the Metallurgical Industry Press, Beijing, in August 2014. Sha has organized and completed the writing of the proposed book, though the main research was done in China.
In this thesis Christian Sohar describes his investigation into the gigacycle fatigue behavior of tool steels. In an interdisciplinary approach he uses knowledge and methods from a wide variety of disciplines including materials science, metallurgy, chemistry, physics and mechanical engineering. Christian gives a general introduction into steel tools and fatigue in materials. Later he extensively discusses the experimental techniques and results. Indeed it is the detail of the content in this thesis which makes it an invaluable resource for students entering the field and scientists working in related disciplines. Overall, the thesis helps us understand more about the mechanical behavior of metallic materials with complex microstructure and high hardness.
Metallic nanoparticles hold promise for their potential applications in a wide array of disciplines ranging from materials science to medicine. This book brings the power of theoretical methods to an audience of experimentalists, and explicates the simulation of metallic clusters and nanoparticles. It begins with a summary of the current state of research on metallic nanoparticles, then moves on to the current state of the art in theory of metallic nanoparticldes, and then explains why and how these tools help experimentalists. Contributions are provided by renowned experts in the field from across the world.
This book comprehensively details the applications of ionic liquids in rare earth green separation and utilization based on the unique interactions of ionic liquids with rare earth ions. It consists of nine chapters demonstrating the synthesis and properties of ionic liquids, coordination chemistry of ionic liquids and rare earth, ionic liquids as diluents, extractants, adsorption resins for rare earth extraction and separation, electrodeposition of rare earth metals in ionic liquids, and preparation of rare earth material with the aid of ionic liquids. It is both interesting and useful to chemists, metallurgists and graduate students working on fundamental research of ionic liquids as well as professionals in the rare earth industry. It provides considerable insights into green chemistry and sustainable processes for rare earth separation in order to meet the environmental challenge of rare earth metallurgy around the globe, especially in China. Ji Chen is a Professor of Chemistry at the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, China.
This book comprises 96 peer-reviewed contributions submitted to the 10th ICAM Congress, held in Trondheim, Norway on 01-05 August 2011. Themes covered include: 1) Advanced materials, including high-performance technical ceramics and glasses, 2) Analytical techniques, instrumentation and automation, 3) Bio-mimetic mineral materials, medical mineralogy, 4) Construction materials including cement/SCMs, concrete, bricks, tiles, screeds, 5) Cultural heritage, stone artifacts and preservation, 6) Environment and energy mineralogy, including CO2 sequestration, 7) Geometallurgy and process mineralogy, and 8) Industrial minerals including gems, ore minerals, and mineral exploration.
This book embraces the entire range of problems associated with phase equilibria in "tungsten - carbon" binary system and related ternary systems, nonstoichiometry, disorder and order in different tungsten carbides, electronic and crystal structure of these carbides. The main application of tungsten carbides is constituent in hardmetals for cutting tools. In the last 20 years, the most active efforts were made in synthesis and application of nanocrystalline tungsten carbide for the production of nanostructured hardmetals. The present book describes in detail different methods for production of nanocrystalline tungsten carbide. The peculiarities of sintering of Co hardmetals from nanocrystalline powders having different particle sizes are discussed. Materials scientists using tungsten carbide to create novel superhard and tough materials will find this book particularly useful. |
![]() ![]() You may like...
Comprehensive Organometallic Chemistry…
Gerard Parkin, Karsten Meyer, …
Hardcover
R181,402
Discovery Miles 1 814 020
Fundamentals of Magnesium Alloy…
Mihriban O. Pekguleryuz, Karl Kainer, …
Hardcover
R4,191
Discovery Miles 41 910
The Welding Engineer's Guide to Fracture…
Philippa Moore, Geoff Booth
Hardcover
R3,896
Discovery Miles 38 960
Fluoropolymer Applications in the…
Sina Ebnesajjad, Pradip R Khaladkar
Hardcover
R7,355
Discovery Miles 73 550
|