![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Metals technology / metallurgy
This book comprises selected papers from the Fourth International Conference on Materials and Manufacturing Engineering (ICMME 2019). The contents focus on the latest developments in the synthesis and characterization of new materials, and highlights the challenges involved in the manufacturing and machinability of different materials. Advanced and cost-effective manufacturing processes and their applications are also discussed in the book. In addition, it covers topics like robotics, fluid dynamics, design and development, and different optimization techniques. The contents of this book will be beneficial to students, researchers, and industry professionals.
The metallurgy of shells, tanks, bridges and other military equipment.
The book describes conventional metal cutting process (turning, milling, shaper, grinding, drilling), computer aided manufacturing and modern machining processes (EDM, LBM, AJM, ECM), accompanying theoretical concepts with graphical represenations. Each chapter will be followed by several problems and questions that will help the reader to signifi cantly understand the formulas and the calculations of machining responses.
This book explores the principles of supply-side structural reform and current practices in the Chinese steel industry. Focusing on the general requirements for high-quality development, it reviews the evolution of the global and Chinese steel industries with regard to reduction, innovation, and transformation. It also summarizes industrial development law from a transfer route perspective, analyzes major challenges and opportunities for the steel industry in the new era, and proposes strategic orientation and implementation measures for the future development of the steel industry. The book contends that high-quality development of the steel industry must be driven by innovation, and it is essential to promote integrated development based on several aspects - greenness, coordination, quality, standardization, differentiation, service, intelligence, diversification, and internationalization - in order to reshape the industrial value chain and continuously improve industrial competitiveness. This concept is essential to help Chinese steel companies prepare development plans for transformation and upgrading. Combining thorough analysis, unique insights, and many practical cases, the book offers a guide to and inspiration for future implementation approaches.
Friction Stir Processing of 2XXX Aluminum Alloys including Al-Li Alloys is the latest edition in the Friction Stir Welding and Processing series and examines the application of friction stir welding to high strength 2XXX series alloys, exploring the past and current developments in the field. The book features recent research showing significant benefit in terms of joint efficiency and fatigue performance as a result of friction stir welding. Friction stir welding has demonstrated significant benefits in terms of its potential to reduce cost and increase manufacturing efficiency of industrial products including transportation, particularly the aerospace sector. The 2XXX series aluminum alloys are the premium aluminum alloys used in aerospace. The book includes discussion of the potential future directions for further optimization, and is designed for both practicing engineers and materials scientists, as well as researchers in the field.
This book addresses methods used in the synthesis of light alloys and composites for industrial applications. It begins with a broad introduction to virtually all aspects of the technology of light alloys and composite materials for aircraft and aerospace applications. The basic theory of fiber and particle reinforcements; light metallic material characteristics and composite systems; components forms, and manufacturing techniques and processes are discussed. The book then progresses to describe the production of alloys and composites by unconventional techniques, such as powder metallurgy, sandwich technique, severe plastic deformation, additive manufacturing, and thermal spray, making it appropriate for researchers in both academia and industry. It will be of special interest to aerospace engineers. Provides a broad introduction to the technology used in manufacturing light alloys and composite materials; Describes the current technologies employed in synthesizing light alloys made from advanced materials; Focuses on unconventional techniques used to produce light alloys and composites in aerospace applications.
Biomaterials are composed of metallic materials, ceramics, polymers, composites and hybrid materials. Biomaterials used in human beings require safety regulations, toxicity, allergic reaction, etc. When used as implantable materials their biological compatibility, biomechanical compatibility, and morphological compatibility must be acessed. This book explores the design and requirements of biomaterials for the use in implantology.
ASM Handbook, Volume 19 is the first comprehensive reference book to put critical information on both fatigue and fracture mechanics in one convenient volume. It provides comprehensive data on a broad spectrum of engineering structural materials and alloys. The volume covers mechanisms, testing, analysis, and characterization. Vital for design, testing, and material selectionPractical information for estimating fatigue life In-depth coverage of practical fracture mechanics for life assessment, life extension, and fracture control Thorough coverage of key structural materials, weldments and components You'll learn about fatigue and fracture from both the fundamental and practical standpoint. It's the essential data necessary for you to make informed decisions on alloy design and material selection. You'll also gain valuable insight into fracture control, life assessment, and failure analysis. Providing a working knowledge of fatigue and fracture properties in actual engineering practice, this Handbook is especially useful in evaluating test data and helping you understand the key variables that affect results. It will also give you a better grasp of fracture mechanics to aid you in life assessment and life extension of components. Two and a half years in development, this book is a wide collection of articles contributed by almost 100 leading international authorities, then refined by exhaustive peer review. It's an absolute must for component designers, mechanical engineers, metallurgists, materials scientists, and engineering students who are involved in the testing, analysis, or use of fatigue and fracture properties. Sections include: Fatigue Mechanisms, Crack Growth, Testing, Engineering Aspects of Fatigue Life, Fracture Mechanics of Engineering Materials, Fatigue and Fracture Control, Castings, Weldments, Wrought Steels, Aluminum Alloys, Titanium Alloys and Superalloys, Other Structural Alloys, Solders, Advanced Materials. Appendices contain comprehensive coverage of fatigue strength parameters and stress-intensity factors.
This book comprehensively discusses essential aspects of terminal ballistics, combining experimental data, numerical simulations and analytical modeling. This new, 3rd edition reflects a number of recent advances in materials science, such as the use of polyurea layers on metallic plates in order to improve their ballistics. In addition, more data and analyses are now available on dwell and interface defeat in ceramic tiles coated with polymers, and are presented here. Lastly, the new edition includes new results, numerical and empirical, concerning the DIF issue in brittle solids, as well as the "upturn" phenomenon in the stress-strain curves of ductile solids.The author also added a new analysis of concrete penetration experiments which accounts for the scaling issue in this field. This is a new,and important, addition which we are happy to announce. They also added some new insights into the interaction of EEP's and FSP projectiles with metallic plates. Throughout the book, the authors demonstrate the advantages of the simulation approach in terms of understanding the basic physics behind the phenomena investigated, making it a must-read for all professionals who need to understand terminal ballistics.
This atlas is a collection of continuous cooling transformation diagrams applicable to low carbon low alloy weld metals. It will be of assistance to welding engineers, welding metallurgists, welding-consumables designers in industry.
This book demonstrates the potential of novel in-situ experiments, performed on microscopic and macroscopic length scales, for investigating localized deformation processes in metallic materials, particularly their kinetics and the associated evolution of local strain fields. It features a broad methodological portfolio, spanning optical and electron microscopy, digital image correlation, infrared theromgraphy and acoustic emission testing, and particularly focuses on identifying the localized microscopic deformation processes in high-strength/high-ductility CrMnNi TRIP/TWIP (TRansformation Induced Plasticity/TWinning Induced Plasticity) steels. Presenting state-of-the art methodology applied to topical and pertinent problems in materials engineering, this book is a valuable resource for researchers and graduate students working in the field of plasticity and deformation of structural materials.
Wire Technology: Process Engineering and Metallurgy, Second Edition, covers new developments in high-speed equipment and the drawing of ultra-high strength steels, along with new computer-based design and analysis software and techniques, including Finite Element Analysis. In addition, the author shares his design and risk prediction calculations, as well as several new case studies. New and extended sections cover measurement and instrumentation, die temperature and cooling, multiwire drawing, and high strength steel wire. Coverage of process economics has been greatly enhanced, including an exploration of product yields and cost analysis, as has the coverage of sustainability aspects such as energy use and recycling. As with the first edition, questions and problems are included at the end of each chapter to reinforce key concepts.
This book describes systematically the theory and technology of the precision forming of large, complex and thin-walled superalloy castings for aircraft engines, covering all the important basic aspects of the manufacturing process, including process design, wax pattern, ceramic molds, casting and solidification, heat treatment, repair casting and dimension precision control. The correlation of casting defects, structural characteristics and performance of castings is revealed through a range of tests. It also discusses the latest technologies and advances in this field - such as imaging the solidification process by means of synchrotron radiography, 3D computerized tomography and reconstruction of microporosity defects, analysis and diagnosis of error sources for dimension over-tolerance and adjusted pressure casting technology - which are of particular interest. Providing essential insights, the book offers a valuable guide to the design and manufacture of superalloy casting parts for aircraft engines.
The Extraction and Refining of Metals provides a novel approach to
the science and technology of both ferrous and non-ferrous metal
production. Rather than the traditional treatment in which one
metal at a time is considered, this new approach, which examines
several metals at a time, reveals more clearly the versatility and
limitations of each of the main types of process. The restrictions
imposed on the selection of the process routes by thermodynamic and
kinetic factors and by economic and environmental constraints are
examined in detail. The conservation of energy and materials is
emphasized and illustrated by the description of new and improved
extraction methods.
This compact overview on physical metallurgy provides a detailed coverage of phase equilibria and phase transformations in metals and alloys. It presents the broad range of topics from processes of crystallization and diffusion mechanisms to plastic deformations, recrystallization and phase transformations. It presents the microstructures in various alloys, especially in iron alloys and steels. As an introductory work it is valuable to Material Scientists, Students and Engineers.
This book will help chemists and non-chemists alike understand the fundamentals of surface chemistry and precursor design, and how these precursors drive the processes of atomic layer deposition, and how the surface-precursor interaction governs atomic layer deposition processes. The underlying principles in atomic layer deposition rely on the chemistry of a precursor with a surface.
The current state of understanding of emerging iron alloys and high-alloy ferrous systems, in comparison with some conventional steels, is compiled in this single volume to further their development. While most of the conventional steels are produced routinely today, many advanced high strength steels and iron-based alloys are still in the laboratory stage. The iron-based emerging alloys can yield high levels of mechanical and physical properties due to their new alloy concepts and novel microstructures leading to multiple benefits of their use in terms of sustainability and environmental impact. This book contains introductory chapters that present the requisite background knowledge on thermodynamics, phase diagrams, and processing routes used for the ferrous alloys to enable the readers a smooth understanding of the main chapters. Then, an overview of the conventional microalloyed steels and advanced high strength steels is given to present the benchmark of the existing steels and ferrous alloys manifesting their current state-of-the-art in terms of physical metallurgy and engineering applications. Subsequent chapters detail novel, emerging ferrous alloys and high-alloy ferrous systems. Summarizes the state-of-the-art of emerging iron-based alloys and the new processing and physical metallurgy-related developments of high-alloy iron systems; Explores new iron-based systems driven by the need for new properties, enhanced performance, sustainable processes and educed environmental impact; Compiles cutting-edge research on the progress of materials science of iron-based systems, from physical metallurgy to engineering applications, and possible avenues for future research.
Written by the inventors and leading experts of this new field, the book results from the International Symposium on "Atomic Switch: Invention, Practical use and Future Prospects" which took place in Tsukuba, Japan on March 27th - 28th, 2017. The book chapters cover the different trends from the science and technology of atomic switches to their applications like brain-type information processing, artificial intelligence (AI) and completely novel functional electronic nanodevices. The current practical uses of the atomic switch are also described. As compared with the conventional semiconductor transistor switch, the atomic switch is more compact (~1/10) with much lower power consumption (~1/10) and scarcely influenced by strong electromagnetic noise and radiation including cosmic rays in space (~1/100). As such, this book is of interest to researchers, scholars and students willing to explore new materials, to refine the nanofabrication methods and to explore new and efficient device architectures.
This book describes the application of artificial intelligence (AI)/machine learning (ML) concepts to develop predictive models that can be used to design alloy materials, including hard and soft magnetic alloys, nickel-base superalloys, titanium-base alloys, and aluminum-base alloys. Readers new to AI/ML algorithms can use this book as a starting point and use the MATLAB (R) and Python implementation of AI/ML algorithms through included case studies. Experienced AI/ML researchers who want to try new algorithms can use this book and study the case studies for reference. Offers advantages and limitations of several AI concepts and their proper implementation in various data types generated through experiments and computer simulations and from industries in different file formats Helps readers to develop predictive models through AI/ML algorithms by writing their own computer code or using resources where they do not have to write code Covers downloadable resources such as MATLAB GUI/APP and Python implementation that can be used on common mobile devices Discusses the CALPHAD approach and ways to use data generated from it Features a chapter on metallurgical/materials concepts to help readers understand the case studies and thus proper implementation of AI/ML algorithms under the framework of data-driven materials science Uses case studies to examine the importance of using unsupervised machine learning algorithms in determining patterns in datasets This book is written for materials scientists and metallurgists interested in the application of AI, ML, and data science in the development of new materials.
This volume discusses the great potential of metal nanoparticle catalysts for complicated molecular synthesis and reviews the current progress of this field. The development of highly active and stable heterogeneous catalysts is a crucial subject in modern science. However, development of heterogeneous catalysts for fine chemical synthesis has lagged far behind those for bulk chemical process. In recent years metal nanoparticle catalysts have been of great interest in this area due to their unique activity, ease of heterogenization, and robustness. Therefore, metal nanoparticle catalysts are an excellent candidate for the above-mentioned active and robust heterogeneous catalysts and this book provides an overview of this area. The present volume summarizes recent progress on nanoparticle catalysis for various organic transformations from simple redox reactions to complex asymmetric C-C bond forming reactions and also presents seminal studies on new technologies. It comprehensively summarizes advances in metal nanoparticle catalysis across several aspects including reaction manners, mechanistic investigations and new synthetic methodologies to encourage the use of metal nanoparticle catalysts for future organic synthesis. This volume will be of interest to students, researchers and professionals focused on the next-generation of fine chemical synthesis. |
![]() ![]() You may like...
Phase Transformations in Steels…
Elena Pereloma, David V. Edmonds
Hardcover
R6,057
Discovery Miles 60 570
Patents for Inventions - Abridgements of…
Great Britain Patent Office
Paperback
R865
Discovery Miles 8 650
A Study of the Open Hearth - a Treatise…
Harbison-Walker Refractories Company
Paperback
R400
Discovery Miles 4 000
Fluoropolymer Applications in the…
Sina Ebnesajjad, Pradip R Khaladkar
Hardcover
R7,524
Discovery Miles 75 240
The Welding Engineer's Guide to Fracture…
Philippa Moore, Geoff Booth
Hardcover
R3,995
Discovery Miles 39 950
|