![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Metals technology / metallurgy
Africa's dire need to industrialize is universally acknowledged and it is evident that the continent's vast mineral resources can catalyze that industrialization. This requires the promotion of local beneficiation and value addition of minerals to yield materials on which modern Africa's industry and society can rely. This book is, therefore, about transforming Africa's comparative advantages in minerals into the continent's competitive edge regarding materials. Mineral beneficiation and value addition form the basis and provide opportunities for mineral-driven Africa's industrialization. The scope of the book is three-fold with inter-connected relationships: Information, Technical, and Policy oriented. It will be a useful reference material for mining undergraduate students on beneficiation and value addition of each of the minerals found in Africa. The book, while presenting a broad overview of beneficiation and value addition of Africa's minerals, provides crucial starting material for postgraduate research students and R&D institutions who wish to delve into more advanced methods of extraction and utilization of mineral-derived materials that are in Africa for the purpose of industrialization of the continent.
This collection features papers presented at the 147th Annual Meeting & Exhibition of The Minerals, Metals & Materials Society.
The Magnesium Technology Symposium, the event on which this collection is based, is one of the largest yearly gatherings of magnesium specialists in the world. Papers represent all aspects of the field, ranging from primary production to applications to recycling. Moreover, papers explore everything from basic research findings to industrialization. Magnesium Technology 2017 covers a broad spectrum of current topics, including alloys and their properties; cast products and processing; wrought products and processing; forming, joining, and machining; corrosion and surface finishing; ecology; and structural applications. In addition, there is coverage of new and emerging applications.
Despite their tremendous potential, Mg and its alloys are not yet used in biomedical applications. This book aims to provide scientific insights into the challenges of the materials, and give an overview of the research regarding their mechanical properties, corrosion behaviour and biological performances. The authors intend to put the reader into the position to accurate discern the proper Mg-based material for his/her applications and to choose the proper improvement strategy to his/her cause. To this aim, the manuscript is structured as follow: in Section 2, the main challenges hampering the use of magnesium in biomedical applications and the common improvement strategies are listed. In Section 3, the most investigated Mg alloys are reported in separate sub-sections, detailing their mechanical properties, corrosion behaviour and biotoxicity. High-pure and ultra-high-pure Mg, Al-based Mg alloys, Zn-based Mg alloys, Ca-based alloys and RE-based Mg alloys have been considered. In Section 4, the alloys' performances with respect to the challenges is summarized providing the reader with useful information and suggestions on the potentially most suited choice. Finally, in Section 5, an outlook portraying the authors' opinion of the future development of the field will be provided. This book will allow biomedical engineers, surface scientists, material scientists, implant manufacturers and companies working on implant approval an overview of the state-of-the-art technologies adopted so far to overcome the drawbacks of Mg for biomedical applications. Particular emphasis is put on explaining the link between mechanical, corrosion and biocompatible properties of Mg and its alloys as well as their pros and cons. In doing so, the authors intend to put the reader into the position to accurate discern the proper Mg-based material for his/her applications and to choose the proper improvement strategy to his/her cause.
The book focuses on the thermal transformations of various types of metal chelates, e.g. low molecular weight and polymeric metal chelates, coordination polymers and metal-organic frameworks. It analyzes the major advances and the problems in the preparation of metal oxide materials, mixed-oxide nanocomposites, carbon materials and polymer derived non-oxide nanocomposites by the thermolysis of different metal chelates. It also highlights the influence of the spatial and electronic structure of metal chelates on the mechanism and kinetics of their thermal transformations, and discusses important issues like conjugate thermolysis and computer modelling of the thermolysis process. This book is useful for researchers experienced in thermolysis as well as for young scientists interested in this area of science.
This book covers the recent development of metal oxides, hydroxides and their carbon composites for electrochemical oxidation of water in the production of hydrogen and oxygen as fuels. It includes a detailed discussion on synthesis methodologies for the metal oxides/hydroxides, structural/morphological characterizations, and the key parameters (Tafel plot, Turnover frequency, Faradic efficiency, overpotential, long cycle life etc.) needed to evaluate the electrocatalytic activity of the materials. Additionally, the mechanism behind the electro oxidation process is presented. Readers will find a comprehensive source on the close correlation between metal oxides, hydroxides, composites, and their properties and importance in the generation of hydrogen and oxygen from water. The depletion of fossil fuels from the earth's crust, and related environmental issues such as climate change, demand that we search for alternative energy resources to achieve some form of sustainable future. In this regard, much scientific research has been devoted to technologies such as solar cells, wind turbines, fuel cells etc. Among them fuel cells attract much attention because of their versatility and efficiency. In fuel cells, different fuels such as hydrogen, CO2, alcohols, acids, methane, oxygen/air, etc. are used as the fuel, and catalysts are employed to produce a chemical reaction for generating electricity. Hence, it is very important to produce these fuels in an efficient, eco-friendly, and cost effective manner. The electrochemical splitting of water is an environmentally friendly process to produce hydrogen (the greener fuel used in fuel cells), but the efficiencies of these hydrogen evolution reactions (cathodic half reaction) are strongly dependent on the anodic half reaction (oxygen evolution reaction), i.e., the better the anodic half, the better will be the cathodic reaction. Further, this oxygen evolution reaction depends on the types of active electrocatalysts used. Though many more synthetic approaches have been explored and different electrocatalysts developed, oxide and hydroxide-based nanomaterials and composites (with graphene, carbon nanotubes etc.) show better performance. This may be due to the availability of more catalytic surface area and electro active centers to carry out the catalysis process.
This book represents the first ever scientific monograph including an in-depth analysis of all major field-assisted sintering techniques. Until now, the electromagnetic field-assisted technologies of materials processing were lacking a systematic and generalized description in one fundamental publication; this work promotes the development of generalized concepts and of comparative analyses in this emerging area of materials fabrication. This book describes modern technologies for the powder processing-based fabrication of advanced materials. New approaches for the development of well-tailored and stable structures are thoroughly discussed. Since the potential of traditional thermo-mechanical methods of material treatment is limited due to inadequate control during processing, the book addresses ways to more accurately control the resultant material's structure and properties by an assisting application of electro-magnetic fields. The book describes resistance sintering, high-voltage consolidation, sintering by low-voltage electric pulses (including spark plasma sintering), flash sintering, microwave sintering, induction heating sintering, magnetic pulse compaction and other field-assisted sintering techniques. Includes an in-depth analysis of all major field-assisted sintering techniques; Explains new techniques and approaches for material treatment; Provides detailed descriptions of spark plasma sintering, microwave sintering, high-voltage consolidation, magnetic pulse compaction, and various other approaches when field-assisted treatment is applied.
This book focuses on the new direction of magnetic pulsed metal working by attraction of sheet metals. In the first part, the authors focus on the magnetic pulsed pressure for forming of inner angles in the sheet metals. Part 2 of the book presents the magnetic pulsed attraction of thin-walled metals. In the third and last part, the authors present the practical realization of external restoring the dents on the car bodies by electromagnetic metal forming attraction.
This book addresses anti-fatigue manufacturing, analysis and test verification technologies for typical aircraft structures, including fastening holes, shot peening plates, different types of joints and wing boxes. Offering concrete solutions to practical problems in aircraft engineering, it will benefit researchers and engineers in the fields of Aerospace Technology and Astronautics.
This practical guide to spectroscopy and inorganic materials meets the demand from academia and the science community for an introductory text that introduces the different optical spectroscopic techniques, used in many laboratories, for material characterisation. * Treats the most basic aspects to be introduced into the field of optical spectroscopy of inorganic materials, enabling a student to interpret simple optical (absorption, reflectivity, emission and scattering) spectra * Contains simple, illustrative examples and solved exercises * Covers the theory, instrumentation and applications of spectroscopy for the characterisation of inorganic materials, including lasers, phosphors and optical materials such as photonics This is an ideal beginner's guide for students with some previous knowledge in quantum mechanics and optics, as well as a reference source for professionals or researchers in materials science, especially the growing field of optical materials.
This book explores the application of external physical fields to the solidification processing of metallic alloys. Leading academics from around the world present comprehensive and critical reviews on state-of-the-art research and discuss possible future directions. Major physical fields, including electromagnetic, electric, acoustic, and thermal, are considered. In addition, the most advanced synchrotron X-ray based real-time and in-situ studies and numerical modeling methodologies are reviewed and discussed, with a special emphasis on their applications to the solidification processes. Throughout, all chapters are illustrated with both historical and very recent research cases, including typical examples of in-situ studies, modeling, and simulation. This book contains essential knowledge and information suitable for a wide audience, from undergraduate and postgraduate students to academics, practicing researchers, and engineers in materials, metallurgy, and manufacturing.
In this book, the history of the concepts critical to the discovery and development of aluminum, its alloys and the anodizing process are reviewed to provide a foundation for the challenges, achievements, and understanding of the complex relationship between the aluminum alloy and the reactions that occur during anodic oxidation. Empirical knowledge that has long sustained industrial anodizing is clarified by viewing the process as corrosion science, addressing each element of the anodizing circuit in terms of the Tafel Equation. This innovative approach enables a new level of understanding and engineering control for the mechanisms that occur as the oxide nucleates and grows, developing its characteristic highly ordered structure, which impact the practical function of the anodic aluminum oxide.
Provides a comprehensive description for machining technologies of stainless steels and super alloys with consideration to current industrial applications. * Presents current and recent developments related to traditional and nontraditional machining techniques of stainless steels and super alloys * Arranges types of stainless steels and super alloys in qualitative and quantitative form, as related to their machining characteristics, providing the reader with information regarding optimum working condition for each material * Proposes a 10-level machinability chart to rank important grades of stainless steels * Arranges the machinability rating of the most commonly used super alloys in a descending order * Presents non-traditional machining processes along with some hybrid processes which have been applied successfully to stainless steels and super alloys
In recent years, global metallurgical industries have experienced fast and prosperous growth. High-temperature metallurgical technology is the backbone to support the technical, environmental, and economical needs for the growth. This collection features contributions covering the advancements and developments of new high-temperature metallurgical technologies and their applications to the areas of processing of minerals; extraction of metals; preparation of metallic, refractory and ceramic materials; treatment and recycling of slag and wastes; and saving of energy and protection of environment.The volume will have a broad impact on the academics and professionals serving the metallurgical industries around the world.
The revised edition of this important reference volume presents an expanded overview of the analytical and numerical approaches employed when exploring and developing modern laser materials processing techniques. The book shows how general principles can be used to obtain insight into laser processes, whether derived from fundamental physical theory or from direct observation of experimental results. The book gives readers an understanding of the strengths and limitations of simple numerical and analytical models that can then be used as the starting-point for more elaborate models of specific practical, theoretical or commercial value. Following an introduction to the mathematical formulation of some relevant classes of physical ideas, the core of the book consists of chapters addressing key applications in detail: cutting, keyhole welding, drilling, arc and hybrid laser-arc welding, hardening, cladding and forming. The second edition includes a new a chapter on glass cutting with lasers, as employed in the display industry. A further addition is a chapter on meta-modelling, whose purpose is to construct fast, simple and reliable models based on appropriate sources of information. It then makes it easy to explore data visually and is a convenient interactive tool for scientists to improve the quality of their models and for developers when designing their processes. As in the first edition, the book ends with an updated introduction to comprehensive numerical simulation. Although the book focuses on laser interactions with materials, many of the principles and methods explored can be applied to thermal modelling in a variety of different fields and at different power levels. It is aimed principally however at academic and industrial researchers and developers in the field of laser technology.
This book includes papers on recent research carried out in the field of metal-matrix composites (MMCs). Processing, microstructure, and mechanical properties of MMCs and unreinforced matrix alloys will be covered with a focus on aluminum, titanium, nickel, and copper MMCs. Those involved in the research of MMCs and unreinforced alloys, particularly in aerospace, space, and automotive materials research, will find this volume indispensible.
This book provides details and collective information on working principle, process mechanism, salient features, and unique applications of various advanced manufacturing techniques and processes belong. The book is divided in three sessions covering modern machining methods, advanced repair and joining techniques and, finally, sustainable manufacturing. The latest trends and research aspects of those fields are highlighted.
The new 2016 edition of ASM Handbook, Volume 3: Alloy Phase Diagrams is a revision of the original 1992 edition. 40% of the volume has been updated and now includes 1083 binary systems, 1095 binary diagrams, 115 ternary systems, and 406 ternary diagrams. The revised volume provides a more complete explanation of phase diagrams and their significance with the addition of new material on solid solutions and phase transformations; thermodynamics; isomorphous, eutectic, peritectic, and monotectic alloy systems; solid-state transformations; and intermediate phases. Users of this volume will gain a better understanding of phase diagram construction and alloy system interactions while having a valuable resource to aid in their research and engineering pursuits. Since the 1992 edition of this volume was published, improvements in experimental techniques have increased the accuracy of results, filling the remaining gaps of existing systems. Increasingly sophisticated computer modeling methods determine phase equilibria that could not be determined experimentally in a practical manner - resulting in numerous revisions of previously accepted phase diagrams, and predicted phase diagrams for newly assessed systems.
This collection offers new research findings, innovations, and industrial technological developments in extractive metallurgy, energy and environment, and materials processing. Technical topics included in the book are thermodynamics and kinetics of metallurgical reactions, electrochemical processing of materials, plasma processing of materials, composite materials, ionic liquids, thermal energy storage, energy efficient and environmental cleaner technologies and process modeling. These topics are of interest not only to traditional base ferrous and non-ferrous metal industrial processes but also to new and upcoming technologies, and they play important roles in industrial growth and economy worldwide.
This collection presents papers from a symposium on extraction of rare metals as well as rare extraction processing techniques used in metal production. Topics include the extraction and processing of elements like antimony, arsenic, gold, indium, palladium, platinum, rare earth metals including yttrium and neodymium, titanium, tungsten, and vanadium. Rare processing techniques are covered, including direct extraction processes for rare-earth recovery, biosorption of precious metals, fluorination behavior of uranium and zirconium mixture of fuel debris treatment, and recovery of valuable components of commodity metals such as zinc, nickel, and metals from slag.
This collection features contributions covering the advances and developments of new high-temperature metallurgical technologies and their applications to the areas of: processing of minerals; extraction of metals; preparation of metallic, refractory, and ceramic materials; treatment and recycling of slag and wastes; conservation of energy; and environmental protection. The volume will have a broad impact on the academics and professionals serving the metallurgical industries around the world by providing them with comprehensive coverage of a wide variety of topics.
Autofrettage Processes: Technology and Modeling deals with the technology and modeling of autofrettage processes, explaining the subject in a lucid manner. It highlights how the theory of plasticity and finite element modeling are applied in the modeling of autofrettage processes. Aimed at senior students of mechanical, production, automobile, and chemical engineering, it has the potential to directly benefit practicing engineers and industrials, owing to the inclusion of topics like thermal autofrettage. Key Features: Provides a general introduction to autofrettage Covers the application of theory of plasticity and finite element modeling of autofrettage processes Offers exposure to newer autofrettage processes that to date have not been implemented in industries, along with useful practical data
The book looks into the recent advances in the ex-situ production routes and properties of aluminum and magnesium based metal matrix nanocomposites (MMNCs), produced either by liquid or semi-solid state methods. It comprehensively summarizes work done in the last 10 years including the mechanical properties of different matrix/nanoreinforcement systems. The book also addresses future research direction, steps taken and missing developments to achieve the full industrial exploitation of such composites. The content of the book appeals to researchers and industrial practitioners in the area of materials development for metal matrix nanocomposites and its applications. |
![]() ![]() You may like...
Data-Driven Solutions to Transportation…
Yinhai Wang, Ziqiang Zeng
Paperback
R2,184
Discovery Miles 21 840
Management Of Information Security
Michael Whitman, Herbert Mattord
Paperback
Intuitionistic Fuzzy Sets - Theory and…
Krassimir T. Atanassov
Hardcover
R4,548
Discovery Miles 45 480
Analysis and Evaluation of Fuzzy Systems
Akira Ishikawa, Terry L. Wilson
Hardcover
R2,625
Discovery Miles 26 250
|