![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Microwave technology
This book offers a comprehensive and cohesive overview of transport processes associated with all kinds of charged particles, including electrons, ions, positrons, and muons, in both gases and condensed matter. The emphasis is on fundamental physics, linking experiment, theory and applications. In particular, the authors discuss: The kinetic theory of gases, from the traditional Boltzmann equation to modern generalizations A complementary approach: Maxwell's equations of change and fluid modeling Calculation of ion-atom scattering cross sections Extension to soft condensed matter, amorphous materials Applications: drift tube experiments, including the Franck-Hertz experiment, modeling plasma processing devices, muon catalysed fusion, positron emission tomography, gaseous radiation detectors Straightforward, physically-based arguments are used wherever possible to complement mathematical rigor. Robert Robson has held professorial positions in Japan, the USA and Australia, and was an Alexander von Humboldt Fellow at several universities in Germany. He is a Fellow of the American Physical Society. Ronald White is Professor of Physics and Head of Physical Sciences at James Cook University, Australia. Malte Hildebrandt is Head of the Detector Group in the Laboratory of Particle Physics at the Paul Scherrer Institut, Switzerland.
RF power amplifiers are implemented in communication, semiconductor wafer processing, magnetic resonance imaging (MRI), and radar systems to produce RF signal with the desired characteristics to perform several critical tasks in the entire system. They can be designed to operate in linear or switch-mode, depending on the specific application. This book explores the design and implementation methods for both linear and switch-mode amplifiers with real world engineering problems. The text discusses phased controlled switch-mode amplifiers and distortion and modulation effects in RF amplifiers. It illustrates the interface and integration of components and sub-systems for RF amplifiers. The material is further reinforced with MATLAB design files.
Sales of U.S. chemical sensors represent the largest segment of the multi-billion-dollar global sensor market, which includes instruments for chemical detection in gases and liquids, biosensors, and medical sensors. Although silicon-based devices have dominated the field, they are limited by their general inability to operate in harsh environments faced with factors such as high temperature and pressure. Exploring how and why these instruments have become a major player, Semiconductor Device-Based Sensors for Gas, Chemical, and Biomedical Applications presents the latest research, including original theoretical and experimental work. It also explains how these investigations have translated into applications and products. Written by experts in the field, the chapters review cutting-edge progress on semiconductor and nanomaterial-based sensors. An excellent introduction to the subject, this book is also an outstanding reference for those working on different sensor applications. It addresses various subfields, including: GaN-based sensor arrays for quick and reliable medical testing Optical sensors Wireless remote hydrogen sensing systems MOS-based, thin-film, and nanowire-based sensors The wide-bandgap semiconductor sensors discussed in this book offer many advantages as replacements for silicon-based sensors, including their high chemical resistance, high-temperature operation, and blue and ultraviolet optoelectronic behaviors. Although assays exist for biomedical detection, they are limited by various factors. Nanomaterial devices, such as the sensors examined in this book, are currently the best option for moving toward fast, label-free, sensitive, and selective multiple-detection systems for biological and medical sensing applications. Providing sufficient background information and technical detail, this is an excellent resource for advanced level undergraduate and graduate students as well as researchers in gas, chemical, biological, and medical sensors.
Examines the Low Resistivity, High Mobility, and Zero Bandgap of Graphene The Graphene Science Handbook is a six-volume set that describes graphene's special structural, electrical, and chemical properties. The book considers how these properties can be used in different applications (including the development of batteries, fuel cells, photovoltaic cells, and supercapacitors based on graphene) and produced on a massive and global scale. Volume One: Fabrication Methods Volume Two: Nanostructure and Atomic Arrangement Volume Three: Electrical and Optical Properties Volume Four: Mechanical and Chemical Properties Volume Five: Size-Dependent Properties Volume Six: Applications and Industrialization This handbook describes the fabrication methods of graphene; the nanostructure and atomic arrangement of graphene; graphene's electrical and optical properties; the mechanical and chemical properties of graphene; the size effects in graphene, characterization, and applications based on size-affected properties; and the application and industrialization of graphene. Volume two is dedicated to nanostructure and atomic arrangement and covers: The potential applications of graphene heterostructures, particularly, graphene/h-BN heterostructures Atomic-scale defects in graphene and the huge impact they have on its low-energy electronic structure Recent findings on graphene plasmonics The storage of hydrogen between graphene and inside graphene-oxide frameworks (GOFs) The nitrogen contents, species, synthesis methods, and application on nitrogen-doped graphene Modification methods and applications of graphene and graphene oxide Phonon spectra and vibrational thermodynamic characteristics of graphene nanofilms The imaging of graphene by scanning electron microscopy (SEM) Advances in the formation of graphene-based three-dimensional (3D) architectures and more
Discover the Unique Electron Transport Properties of Graphene The Graphene Science Handbook is a six-volume set that describes graphene's special structural, electrical, and chemical properties. The book considers how these properties can be used in different applications (including the development of batteries, fuel cells, photovoltaic cells, and supercapacitors based on graphene) and produced on a massive and global scale. Volume One: Fabrication Methods Volume Two: Nanostructure and Atomic Arrangement Volume Three: Electrical and Optical Properties Volume Four: Mechanical and Chemical Properties Volume Five: Size-Dependent Properties Volume Six: Applications and Industrialization This handbook describes the fabrication methods of graphene; the nanostructure and atomic arrangement of graphene; graphene's electrical and optical properties; the mechanical and chemical properties of graphene; the size effects in graphene, characterization, and applications based on size-affected properties; and the application and industrialization of graphene. Volume three is dedicated to graphene's electrical and optical properties and covers: Graphene and graphene nanoribbons for use in high-frequency transistors, energy-efficient electronics and photonic devices The interface of graphene/high- dielectrics The strain-induced modifications of plasmons in graphene A possible advanced physical framework for treating graphenic structures Recent progresses in the electric lens based on graphene-like materials The thermal and thermoelectric transport properties of graphene A numerical method for simulating the electromagnetic field interaction with single-layer graphene and more
Size Up the Short- and Long-Term Effects of Graphene The Graphene Science Handbook is a six-volume set that describes graphene's special structural, electrical, and chemical properties. The book considers how these properties can be used in different applications (including the development of batteries, fuel cells, photovoltaic cells, and supercapacitors based on graphene) and produced on a massive and global scale. Volume One: Fabrication Methods Volume Two: Nanostructure and Atomic Arrangement Volume Three: Electrical and Optical Properties Volume Four: Mechanical and Chemical Properties Volume Five: Size-Dependent Properties Volume Six: Applications and Industrialization This handbook describes the fabrication methods of graphene; the nanostructure and atomic arrangement of graphene; graphene's electrical and optical properties; the mechanical and chemical properties of graphene; the size effects in graphene, characterization, and applications based on size-affected properties; and the application and industrialization of graphene. Volume five is dedicated to size effects in graphene, characterization, and applications based on size-affected properties and covers: The use of graphene as a tunnel barrier for both charge and spin transport The mechanical behavior of Kevlar-graphene fibers Size-controlled graphene and cases of graphene nanostructures with size-dependent properties The applications of graphene as adsorbents, supporting and hybridization materials, and catalysts for removal of pollutants in contaminated water and air Recent research efforts to synthesize a variety of graphene-based structures The properties of indirect coupling between magnetic moments in monolayer graphene nanostructures The recent results of the electronic properties of graphene/metal systems Interface traps in graphene field-effect devices Semi-analytical models for the calculation of the quantum capacitance of both monolayer and bilayer graphene and its nanoribbons The various properties of mono- and multilayers of silicene compared with the corresponding properties of graphene The most relevant data obtained in the field of the vibrational characterization of graphene and graphene-based materials and more
This second edition provides first-hand information about the most recent developments in the exciting and fast moving field of telecommunications media and consumer electronics. The DVB group developed the standards which are being used in Europe, Australia, Southeast Asia, and many other parts of the world. Some 150 major TV broadcasting companies as well as suppliers for technical equipment are members of the project. This standard is expected to be accepted for worldwide digital HDTV broadcasting. This book is readable for non-experts with a background in analog transmission, and demonstrates the fascinating possibilities of digital technology. For the second edition, the complete text has been up-dated thoroughly. The latest DVB standards are included in three new sections on Interactive Television, Data Broadcasting, and The Multimedia Home Platform.
Damit elektrische Ger te ungest rt nebeneinander arbeiten k nnen, ist oft eine Schirmung erforderlich. Andere Anwendungsbereiche sind Mess- und Testumgebungen f r Hochfrequenzmessungen und Funktionstests. Das einzige aktuelle deutschsprachige Buch zum Thema behandelt neben der Theorie der elektromagnetischen Schirmung vor allem deren Anwendung: Abbildungen, Tabellen und Messwerte illustrieren die L sung konkreter technischer Probleme. F r die Diskussion um Elektrosmog und Datensicherheit bietet der Band wichtige Hintergrundinformationen.
Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond provides a modern treatise on compact models for circuit computer-aided design (CAD). Written by an author with more than 25 years of industry experience in semiconductor processes, devices, and circuit CAD, and more than 10 years of academic experience in teaching compact modeling courses, this first-of-its-kind book on compact SPICE models for very-large-scale-integrated (VLSI) chip design offers a balanced presentation of compact modeling crucial for addressing current modeling challenges and understanding new models for emerging devices. Starting from basic semiconductor physics and covering state-of-the-art device regimes from conventional micron to nanometer, this text: Presents industry standard models for bipolar-junction transistors (BJTs), metal-oxide-semiconductor (MOS) field-effect-transistors (FETs), FinFETs, and tunnel field-effect transistors (TFETs), along with statistical MOS models Discusses the major issue of process variability, which severely impacts device and circuit performance in advanced technologies and requires statistical compact models Promotes further research of the evolution and development of compact models for VLSI circuit design and analysis Supplies fundamental and practical knowledge necessary for efficient integrated circuit (IC) design using nanoscale devices Includes exercise problems at the end of each chapter and extensive references at the end of the book Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond is intended for senior undergraduate and graduate courses in electrical and electronics engineering as well as for researchers and practitioners working in the area of electron devices. However, even those unfamiliar with semiconductor physics gain a solid grasp of compact modeling concepts from this book.
Substrate Integrated Antennas and Arrays provides a single source for cutting-edge information on substrate integrated circuits (SICs), substrate integrated waveguide (SIW) feeding networks, SIW slot array antennas, SIC traveling-wave antennas, SIW feeding antennas, SIW monopulse antennas, and SIW multibeam antennas. Inspired by the author's extensive research, this comprehensive book: Describes a revolutionary SIC-based antenna technique with the potential to replace existing antenna technologies Examines theoretical and experimental results connected to electrical and mechanical performance Explains how to overcome difficulties in meeting bandwidth, gain, and efficiency specifications Substrate Integrated Antennas and Arrays offers valuable insight into the state of the art of SIC and SIW antenna technologies, presenting research useful to the development of wireless communication base station antennas, portable microwave point-to-point systems, collision avoidance radars, conformal antennas, and satellite antennas.
An in-depth survey of the design and REALIZATIONS of miniaturized fractal microwave and RF filters Engineers are continually searching for design methods that can satisfy the ever-increasing demand for miniaturization, accuracy, reliability, and fast development time. Design and Realizations of Miniaturized Fractal RF and Microwave Filters provides RF and microwave engineers and researchers, advanced graduate students, and wireless and telecommunication engineers with the knowledge and skills to design and realize miniaturized fractal microwave and RF filters. This book is an essential resource for the realization of portable and cellular phones, WiFi, 3G and 4G, and satellite networks. The text focuses on the synthesis and fabrication of miniaturized fractal filters with symmetrical and asymmetrical frequency characteristics in the C, X and Ku bands, though applications to other frequency bands are considered. Readers will find helpful guidance on: Miniaturized filters in bilevel fashion Simplified methods for the synthesis of pseudo-elliptic electrical networks Methods for extracting coupling coefficients and external quality factors from simulations of the RF/microwave structure Methods for matching theoretical couplings to couplings of structure Including studies of the real-world performance of fractal resonators and sensitivity analyses of suspended substrate realizations, this is a definitive resource for both practicing engineers and students who need timely insight on fractal resonators for compact and low-power microwave and RF applications.
Through a biophysical approach, Electromagnetic Fields in Biology and Medicine provides state-of-the-art knowledge on both the biological and therapeutic effects of Electromagnetic Fields (EMFs). The reader is guided through explanations of general problems related to the benefits and hazards of EMFs, step-by-step engineering processes, and basic results obtained from laboratory and clinical trials. Basic biological mechanisms reviewed by several authors lead to an understanding of the effects of EMFs on microcirculation as well as on immune and anti-inflammatory responses. Based upon investigational mechanisms for achieving potential health benefits, various EMF medical applications used around the world are presented. These include the frequent use of EMFs in wound healing and cartilage/bone repair as well as use of EMFs in pain control and inhibition of cancer growth. Final chapters cover the potential of using the novel biophysical methods of electroporation and nanoelectroporation in electrochemotherapy, gene therapy, and nonthermal ablation. Also covered is the treatment of tendon injuries in animals and humans. This book is an invaluable tool for scientists, clinicians, and medical and engineering students.
Capacitance spectroscopy refers to techniques for characterizing the electrical properties of semiconductor materials, junctions, and interfaces, all from the dependence of device capacitance on frequency, time, temperature, and electric potential. This book includes 15 chapters written by world-recognized, leading experts in the field, academia, national institutions, and industry, divided into four sections: Physics, Instrumentation, Applications, and Emerging Techniques. The first section establishes the fundamental framework relating capacitance and its allied concepts of conductance, admittance, and impedance to the electrical and optical properties of semiconductors. The second section reviews the electronic principles of capacitance measurements used by commercial products, as well as custom apparatus. The third section details the implementation in various scientific fields and industries, such as photovoltaics and electronic and optoelectronic devices. The last section presents the latest advances in capacitance-based electrical characterization aimed at reaching nanometer-scale resolution.
Light emitting diodes (LEDs) are already used in traffic signals, signage lighting, and automotive applications. However, its ultimate goal is to replace traditional illumination through LED lamps since LED lighting significantly reduces energy consumption and cuts down on carbon-dioxide emission. Despite dramatic advances in LED technologies (e.g., growth, doping and processing technologies), however, there remain critical issues for further improvements yet to be achieved for the realization of solid-state lighting. This book aims to provide the readers with some contemporary LED issues, which have not been comprehensively discussed in the published books and, on which the performance of LEDs is seriously dependent. For example, most importantly, there must be a breakthrough in the growth of high-quality nitride semiconductor epitaxial layers with a low density of dislocations, in particular, in the growth of Al-rich and and In-rich GaN-based semiconductors. The materials quality is directly dependent on the substrates used, such as sapphire, Si, etc. In addition, efficiency droop, growth on different orientations and polarization are also important. Chip processing and packaging technologies are key issues. This book presents a comprehensive review of contemporary LED issues. Given the interest and importance of future research in nitride semiconducting materials and solid state lighting applications, the contents are very timely. The book is composed of chapters written by leading researchers in III-nitride semiconducting materials and device technology. This book will be of interest to scientists and engineers working on LEDs for lighting applications. Postgraduate researchers working on LEDs will also benefit from the issues this book provides.
This book offers readers an overview of some of the most recent advances in the field of technology for X-ray medical imaging. Coverage includes both technology and applications in SPECT, PET and CT, with an in-depth review of the research topics from leading specialists in the field. Coverage includes conversion of the X-ray signal into analogue/digital value, as well as a review of CMOS chips for X-ray image sensors. Emphasis is on high-Z materials like CdTe, CZT and GaAs, since they offer the best implementation possibilities for direct conversion X-ray detectors. The discussion includes material challenges, detector operation physics and technology and readout integrated circuits required to detect signals processes by high-Z sensors. Authors contrast these emerging technologies with more established ones based on scintillator materials. This book is an excellent reference for people already working in the field as well as for people wishing to enter it.
This textbook provides comprehensive and detailed information on electro-optic modulation, which plays important roles in lightwave networks including optical fiber links, visible ray communications, fiber-wireless, etc. The first part of this book describes roles and basic functions of optical modulators as well as various modulation schemes. The second part is on mathematical expressions dedicated to optical modulation, where sideband generation are clearly described. In conclusion, this book provides useful information for device and system technologies, and helps in understanding fundamental issues on telecommunication systems as well as electro-optic devices. Contents in this book provide valuable information for engineering students in telecommunications. It also gives useful examples of applied mathematics using Bessel functions. It is ideal for upper undergraduate and graduate level classes. Provides comprehensive mathematical expressions dedicated to optical phase modulation based electro-optic effect; Presents practical knowledge of optical modulators as well as basic theory on modulator operation; Includes classroom materials including software and PowerPoint slides for easy integration into curriculum.
This book gives an overview on mid-infrared optical glass and fibers laser, it cover the underlying principle, historic background, as well as recent advances in materials processing and enhanced properties for rare earth doped luminescence, spectroscopy lasers, or optical nonlinearity applications. It describes in great detail, the preparation of high purity non-oxide IR glass and fibers to be used as mid-IR fiber laser and supercontinuum sources for optical fiber spectroscopy. It will be useful for academics, researchers and engineers in various disciplines who require a broad introduction to the subject and would like to learn more about the state-of-the-art and upcoming trends in mid-infrared fiber source development, particularly for industrial, medical and military applications.
This book focuses on basic fundamental and applied aspects of micro-LED, ranging from chip fabrication to transfer technology, panel integration, and various applications in fields ranging from optics to electronics to and biomedicine. The focus includes the most recent developments, including the uses in large large-area display, VR/AR display, and biomedical applications. The book is intended as a reference for advanced students and researchers with backgrounds in optoelectronics and display technology. Micro-LEDs are thin, light-emitting diodes, which have attracted considerable research interest in the last few years. They exhibit a set of exceptional properties and unique optical, electrical, and mechanical behaviors of fundamental interest, with the capability to support a range of important exciting applications that cannot be easily addressed with other technologies. The content is divided into two parts to make the book approachable to readers of various backgrounds and interests. The first provides a detailed description with fundamental materials and production approaches and assembly/manufacturing strategies designed to target readers who seek an understanding ofof essential materials and production approaches and assembly/manufacturing strategies designed to target readers who want to understand the foundational aspects. The second provides detailed, comprehensive coverage of the wide range of device applications that have been achieved. This second part targets readers who seek a detailed account of the various applications that are enabled by micro-LEDs.
This book presents the design requirements of antenna integration for modern commercial devices such as smartphones, dongles, and access points. Practical use-case scenarios of smartphone and the design process of the antenna system for the same are highlighted. The feasibility of scaling up sub-6GHz to mmWave antennas is also discussed in detail followed by a plethora of design examples which could be panel mounted to modern-day commercial smartphones. The unique requirement of gain switchability is introduced with feasible practical antenna designs. High efficiency antennas for 5G base stations is introduced along with a design example on planar all-metallic antenna. Beam switchability requirement for base station is illustrated with a couple of compact antenna system examples. Variety of feeding techniques for mmWave antennas is elaborated in this book. Finally, low-cost antenna designs for future wireless devices are illustrated.
This book presents a timely investigation of radar remote sensing observations for agricultural crop monitoring and advancements of research techniques and their applicability for crop biophysical parameter estimation. It introduces theoretical background of radar scattering from vegetation volume and semi-empirical modelling approaches that are the foundation for biophysical parameter inversion. The contents will help readers explore the state-of-the-art crop monitoring and biophysical parameter estimation using approaches radar remote sensing. It is useful guide for academicians, practitioners and policymakers.
This book offers readers an overview of some of the most recent advances in the field of advanced materials used for gamma and X-ray imaging. Coverage includes both technology and applications, with an in-depth review of the research topics from leading specialists in the field. Emphasis is on high-Z materials like CdTe, CZT and GaAs, as well as perovskite crystals, since they offer the best implementation possibilities for direct conversion X-ray detectors. Authors discuss material challenges, detector operation physics and technology and readout integrated circuits required to detect signals processes by high-Z sensors.
This book presents a collection of problems in spin wave excitations with their detailed solutions. Each chapter briefly introduces the important concepts, encouraging the reader to further explore the physics of spin wave excitations and the engineering of spin wave devices by working through the accompanying problem sets. The initial chapters cover the fundamental aspects of magnetization, with its origins in quantum mechanics, followed by chapters on spin wave excitations, such as the magnetostatic approximation, Walker's equation, the spin wave manifold in the three different excitation geometries of forward volume, backward volume and surface waves, and the dispersion of spin waves. The latter chapters focus on the practical aspects of spin waves and spin wave optical devices and use the problem sets to introduce concepts such as variational analysis and coupled mode theory. Finally, for the more advanced reader, the book covers nonlinear interactions and topics such as spin wave quantization, spin torque excitations, and the inverse Doppler effect. The topics range in difficulty from elementary to advanced. All problems are solved in detail and the reader is encouraged to develop an understanding of spin wave excitations and spin wave devices while also strengthening their mathematical, analytical, and numerical programming skills.
This book presents a variety of techniques using high-frequency (RF) and time-domain measurements to understand the electrical performance of novel, modern transistors made of materials such as graphene, carbon nanotubes, and silicon-on-insulator, and using new transistor structures. The author explains how to use conventional RF and time- domain measurements to characterize the performance of the transistors. In addition, he explains how novel transistors may be subject to effects such as self-heating, period-dependent output, non-linearity, susceptibility to short-term degradation, DC-invisible structural defects, and a different response to DC and transient inputs. Readers will understand that in order to fully understand and characterize the behavior of a novel transistor, there is an arsenal of dynamic techniques available. In addition to abstract concepts, the reader will learn of practical tips required to achieve meaningful measurements, and will understand the relationship between these measurements and traditional, conventional DC characteristics.
This book provides readers with an overview of kinetic energy harvesting systems, their applications, and a detailed discussion of circuit design of variable-capacitance electrostatic harvesters. The authors describe challenges that need to be overcome when designing miniaturized kinetic energy harvesting systems, along with practical design considerations demonstrated through case studies of developing electrostatic energy harvesting systems. The book also, Discusses the subject of Miniaturized Variable-Capacitance Electrostatic Energy Harvesters from both a theoretical and practical/experimental point of view. Describes detailed circuit designs for developing miniaturized electrostatic harvesters. Includes a comprehensive comparison framework for evaluating electrostatic harvesters, enabling readers to select which harvesters are best suited for a particular application.
The book systematically introduces the design theory and method of multi-band RF filtering circuits for the modern wireless communication systems or radar systems, which are required to operate at multi-bands. These multi-band filtering RF circuits have drawn more and more attention from the engineers and scientists in the field of RF circuits design. The book proposes the detailed theoretical analysis and abundant experimental data of multi-mode resonators, multi-band bandpass filter with high selectivity, reflectionless multi-band bandpass filter, balanced filter with high suppression, slotline based multi-band balun filter, switchable filtering diplexer based on reused L-shape resonator and miniaturized 55-/95-GHz on-chip dual-band bandpass Filter. The book is intended for undergraduate and graduate students who are interested in filtering circuits design, researchers who are investigating RF & microwave systems, as well as design engineers who are working in the RF & microwave circuits field. Readers can get an in-depth understanding about the multi-band RF filtering circuits design theory and method. |
![]() ![]() You may like...
The Future Use of Nordic Forests - A…
Erik Westholm, Karin Beland Lindahl, …
Hardcover
The Forest and the City - The Cultural…
Cecil C. Konijnendijk
Hardcover
R3,052
Discovery Miles 30 520
|