![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Microwave technology
This book tackles the 6G odyssey, providing a concerted technology roadmap towards the 6G vision focused on the interoperability between the wireless and optical domain, including the benefits that are introduced through virtualization and software defined radio. The authors aim to be at the forefront of beyond 5G technologies by reflecting the integrated works of several major European collaborative projects (H2020-ETN-SECRET, 5GSTEPFWD, and SPOTLIGHT). The book is structured so as to provide insights towards the 6G horizon, reporting on the most recent developments on the international 6G research effort. The authors address a variety of telecom stakeholders, which includes practicing engineers on the field developing commercial solutions for 5G and beyond products; postgraduate researchers that require a basis on which to build their research by highlighting the current challenges on radio, optical and cloud-based networking for ultra-dense networks, including novel approaches; and project managers that could use the principles and applications for shaping new research proposals on this highly dynamic field.
Advances in Microwave Chemistry discusses the novel bond formation methodologies, synergistic effects of microwaves with other entities, sample preparation including digestion, combustion, and extraction techniques, as well as selectivity in chemical processes. Recent updates are provided on microwave-assisted syntheses of pharmacologically significant aza-, oxo- and other heterocycles, including lactams, nucleosides, bile acids and sterols, the preparation of nanomaterials, composites, and absorber layer materials for thin film. This book also incorporates comparative discussions involving microwave irradiation with conventional methods in different aspects of organic, inorganic, medicinal, and green chemistry. Key Features: Provides a comparative discussion on microwave irradiation with conventional methods in different aspects of organic, inorganic, medicinal, and green chemistry Presents recent applications of microwave radiation in biocatalysis Offers a complete package correlating various aspects of microwaves in organic syntheses, the biological impact of products formed in reactions, pharmacological features, and environmental sustainability of the procedures Explains microwave-induced reactions on structurally complex bile acids and sterols Stands as a valuable and unique addition to the well-established book series, New Directions in Organic and Biological Chemistry
This book highlights the synthesis/fabrication of novel materials for different kinds of optical applications. It covers all aspects of optical applications starting from LED/Lasers, SERS, bio-sensing, bio-imaging and non-linear optical applications such as optical limiting, saturable absorbers etc. The book describes the development of novel materials and geometry as well as engineering of their size and shape for harvesting better optical properties. Nonconventional plasmonic materials and their fabrication are discussed apart from the conventionally employed noble metal based nanosystems. In addition, development of Novel materials/structures for biosensing /bioimaging /optical limiting are also covered.
This book comprises select proceedings of the 4th International Conference on Optical and Wireless Technologies (OWT 2020). The contents of this volume focus on research carried out in the areas of Optical Communication, Optoelectronics, Optics, Wireless Communication, Wireless Networks, Sensors, Mobile Communications and Antenna and Wave Propagation. The volume also explores the combined use of various optical and wireless technologies in next generation applications, and their latest developments in applications like photonics, high speed communication systems and networks, visible light communication, nanophotonics, wireless and MIMO systems. This book will serve as a useful reference to scientists, academicians, engineers and policy-makers interested in the field of optical and wireless technologies.
This book summarizes the latest findings by leading researchers in the field of photon science in Russia and Japan. It discusses recent advances in the field of photon science and chemistry, covering a wide range of topics, including photochemistry and spectroscopy of novel materials, magnetic properties of solids, photobiology and imaging, and spectroscopy of solids and nanostructures. Based on lectures by respected scientists at the forefront of photon and molecular sciences, the book helps keep readers abreast of the current developments in the field.
This book presents an overview of both the theory and experimental methods required to realize high efficiency solar absorber devices. It begins with a historical description of the study of spectrally selective solar absorber materials and structures based on optical principles and methods developed over the past few decades. The optical properties of metals and dielectric materials are addressed to provide the background necessary to achieve high performance of the solar absorber devices as applied in the solar energy field. In the following sections, different types of materials and structures, together with the relevant experimental methods, are discussed for practical construction and fabrication of the solar absorber devices, aiming to maximally harvest the solar energy while at the same time effectively suppressing the heat-emission loss. The optical principles and methods used to evaluate the performance of solar absorber devices with broad applications in different physical conditions are presented. The book is suitable for graduate students in applied physics, and provides a valuable reference for researchers working actively in the field of solar energy.
This book presents a collection of problems in spin wave excitations with their detailed solutions. Each chapter briefly introduces the important concepts, encouraging the reader to further explore the physics of spin wave excitations and the engineering of spin wave devices by working through the accompanying problem sets. The initial chapters cover the fundamental aspects of magnetization, with its origins in quantum mechanics, followed by chapters on spin wave excitations, such as the magnetostatic approximation, Walker's equation, the spin wave manifold in the three different excitation geometries of forward volume, backward volume and surface waves, and the dispersion of spin waves. The latter chapters focus on the practical aspects of spin waves and spin wave optical devices and use the problem sets to introduce concepts such as variational analysis and coupled mode theory. Finally, for the more advanced reader, the book covers nonlinear interactions and topics such as spin wave quantization, spin torque excitations, and the inverse Doppler effect. The topics range in difficulty from elementary to advanced. All problems are solved in detail and the reader is encouraged to develop an understanding of spin wave excitations and spin wave devices while also strengthening their mathematical, analytical, and numerical programming skills.
This two-volume set consists of "Principles of Electromagnetic Waves and Materials, Second Edition" and "Advanced Electromagnetic Computation, Second Edition". Volume I takes an integrative approach to the subject of electromagnetics by supplementing quintessential "old school" information and methods with MATLAB (R) software. Volume II consists of advanced electromagnetic computation which focuses on Algorithms of Finite Differences, Moment Method, Finite Element method and Finite Difference Time Domain method. Hand-computed simple examples and MATLAB-coded simple examples with only a few elements are used to explain the concepts behind the algorithms. Four new chapters are included.
This book discusses the development of radio-wave tomography methods as a means of remote non-destructive testing, diagnostics of the internal structure of semi-transparent media, and reconstruction of the shapes of opaque objects based on multi-angle sounding. It describes physical-mathematical models of systems designed to reconstruct images of hidden objects, based on tomographic processing of multi-angle remote measurements of scattered radio and acoustic (ultrasonic) wave radiation.
This book describes the basic functions of the European Digital Radio DAB+ (Digital Audio Broadcasting plus) with its direct possible applications in a simple way. The book refers to fundamentals of DABs 80+ norms and specifications. Presented subjects are indicating problems of DAB signal propagation and possible multimedia applications. The book provides about 130 figures for explaining new concepts in an easy to approach manner. Applications include, but are not limited to audio compression MPEG, OFDM, SFN phasor representation, multiplexes, MOT, and conditional access. The book is intended for those interested in decisions regarding radio at various levels, owners of radio stations, and designers of various multimedia applications of digital radio in the field of security, students of wireless systems, etc. * Presents the fundamental functions of DAB / DAB+ (Digital Audio Broadcasting) along with its applications * Outlines the European Digital Radio system * Explains the functions of worldwide emerging digital radio subsystems
This book presents a timely investigation of radar remote sensing observations for agricultural crop monitoring and advancements of research techniques and their applicability for crop biophysical parameter estimation. It introduces theoretical background of radar scattering from vegetation volume and semi-empirical modelling approaches that are the foundation for biophysical parameter inversion. The contents will help readers explore the state-of-the-art crop monitoring and biophysical parameter estimation using approaches radar remote sensing. It is useful guide for academicians, practitioners and policymakers.
An introduction to the most relevant theoretical and algorithmic aspects of modern microwave imaging approaches Microwave imaging--a technique used in sensing a given scene by means of interrogating microwaves--has recently proven its usefulness in providing excellent diagnostic capabilities in several areas, including civil and industrial engineering, nondestructive testing and evaluation, geophysical prospecting, and biomedical engineering. "Microwave Imaging" offers comprehensive descriptions of the most important techniques so far proposed for short-range microwave imaging--including reconstruction procedures and imaging systems and apparatus--enabling the reader to use microwaves for diagnostic purposes in a wide range of applications. This hands-on resource features: A review of the electromagnetic inverse scattering problem formulation, written from an engineering perspective and with notations The most effective reconstruction techniques based on diffracted waves, including time- and frequency-domain methods, as well as deterministic and stochastic space-domain procedures Currently proposed imaging apparatus, aimed at fast and accurate measurements of the scattered field data Insight on near field probes, microwave axial tomographs, and microwave cameras and scanners A discussion of practical applications with detailed descriptions and discussions of several specific examples (e.g., materials evaluation, crack detection, inspection of civil and industrial structures, subsurface detection, and medical applications) A look at emerging techniques and future trends "Microwave Imaging" is a practical resource for engineers, scientists, researchers, and professors in the fields of civil and industrial engineering, nondestructive testing and evaluation, geophysical prospecting, and biomedical engineering.
This book offers readers an overview of some of the most recent advances in the field of advanced materials used for gamma and X-ray imaging. Coverage includes both technology and applications, with an in-depth review of the research topics from leading specialists in the field. Emphasis is on high-Z materials like CdTe, CZT and GaAs, as well as perovskite crystals, since they offer the best implementation possibilities for direct conversion X-ray detectors. Authors discuss material challenges, detector operation physics and technology and readout integrated circuits required to detect signals processes by high-Z sensors.
This concise volume provides an introduction to the working principles, design, and construction of air-stable inverted organic light-emitting diodes (OLEDs), which lead to the realization of practical flexible electronics. The first part of the book reviews the history of the three generations of inverted OLEDs: hybrid organic inorganic light-emitting diodes (HOILEDs), metal oxides and organic electron injection layer, describing the materials, fabrication techniques, device structure, applications, and technological challenges involved in each case. The second part of the book focuses on the carrier injection mechanism in OLEDs. The book will be of interest to students and researchers working on organic optoelectronics.
The first comprehensive guide to discrete-time (DT) receivers (RX), discussing the fundamental concepts and implications of the technology. This book will serve as an essential reference, covering the necessary building blocks of this field, such as low-noise transconductance amplifiers, current-driven mixers, DT band-pass filters, and DT low-pass filters. As well as addressing the basics, the authors present the most recent state-of-the-art techniques applied to the DT RX blocks. A step-by-step style is used to allow readers to develop the required skills to design the DT receivers at the architecture level, while providing in-depth knowledge of the details. Written by leading experts from academia, research, and industry, this book provides an excellent reference to the subject for a wide audience, from postgraduate students to experienced researchers and professionals working with RF circuits.
This book highlights the comprehensive knowledge and latest progress in broadband terahertz (THz) technology. THz communication technology is believed to be one of the major choices that succeed the fifth-generation (5G) communication technology. With years of efforts, the author's team has created a number of world records in the generation, transmission, and reception of ultra wideband THz signal, realizing the MIMO transmission and reception of THz communication, the THz signal transmission with communication capacity of 1 Tbit / s, and the optical fiber and THz integrated transmission. A variety of linear and nonlinear algorithms for multi-carrier and single-carrier THz communication systems are developed, which greatly improves the transmission performance of broadband systems. The book covers in details the broadband THz signal generation, long-distance transmission, and high sensitivity detection. It is of great reference value for researchers, engineers, and graduate students in optical and wireless communications.
This book presents a comprehensive study covering the design and application of microwave sensors for glucose concentration detection, with a special focus on glucose concentration tracking in watery and biological solutions. This book is based on the idea that changes in the glucose concentration provoke variations in the dielectric permittivity of the medium. Sensors whose electrical response is sensitive to the dielectric permittivity of the surrounding media should be able to perform as glucose concentration trackers. At first, this book offers an in-depth study of the dielectric permittivity of water-glucose solutions at concentrations relevant for diabetes purposes; in turn, it presents guidelines for designing suitable microwave resonators, which are then tested in both water-glucose solutions and multi-component human blood plasma solutions for their detection ability and sensitivities. Finally, a portable version is developed and tested on a large number of individuals in a real clinical scenario. All in all, the book reports on a comprehensive study on glucose monitoring devices based on microwave sensors. It covers in depth the theoretical background, provides extensive design guidelines to maximize sensitivity, and validates a portable device for applications in clinical settings.
This fourth book in the series Silicon Photonics gathers together reviews of recent advances in the field of silicon photonics that go beyond already established and applied concepts in this technology. The field of research and development in silicon photonics has moved beyond improvements of integrated circuits fabricated with complementary metal-oxide-semiconductor (CMOS) technology to applications in engineering, physics, chemistry, materials science, biology, and medicine. The chapters provided in this book by experts in their fields thus cover not only new research into the highly desired goal of light production in Group IV materials, but also new measurement regimes and novel technologies, particularly in information processing and telecommunication. The book is suited for graduate students, established scientists, and research engineers who want to update their knowledge in these new topics.
This book highlights recent advances of optical spatial solitons in photorefractive materials ranging broadly from the coupling, modulation instability, effect of pyroelectricity, and the stability of photorefractive solitons, among other topics. Photorefractive solitons have been at the forefront of research because of their formation at low laser powers and unique saturable nonlinearity present in photorefractive materials which supports solitons in (2+1) D. There has been a spurt in research on photorefractive solitons recently, which has contributed to a greater understanding of the theoretical foundation of photorefractive solitons as also of their various interesting and practical applications. The book elucidates the diversity of photorefractive solitons and provides a good resource for students, researchers, and professionals in the area of nonlinear optics.
This graduate-level textbook presents the principles, design methods, simulation, and materials of photonic circuits. It provides state-of-the-art examples of silicon, indium phosphide, and other materials frequently used in these circuits, and includes a thorough discussion of all major types of devices. In addition, the book discusses the integrated photonic circuits (chips) that are currently increasingly employed on the international technology market in connection with short-range and long-range data communication. Featuring references from the latest research in the field, as well as chapter-end summaries and problem sets, Principles of Photonic Integrated Circuits is ideal for any graduate-level course on integrated photonics, or optical technology and communication.
This book highlights the rapidly emerging field of solution-processed halide perovskite lasers. These amazing materials not only possess exceptional photovoltaic properties, but are also outstanding optical gain media. Halide perovskites are the latest member of solution-processed optical gain media, joining organics and traditional semiconductor colloidal quantum dots. Amplified spontaneous emission and lasing have been demonstrated in various halide perovskite configurations and nanostructures with wavelengths tunable over the visible and infrared wavelengths (400-1000 nm). This book provides comprehensive information on perovskite lasing, starting with some fundamentals of lasers and their basic operating principles. Unambiguous methods for identifying lasing light emission are presented, while the basic optoelectronic properties of perovskite materials are also discussed, with an emphasis on their photophysics, using ultrafast optical spectroscopy techniques. The viability of perovskites as a gain media within a suitable resonator, as well as the characterization methods for optical gain, are highlighted. The book closes with a discussion on the remaining challenges (such as electrical driven lasing and material stabilities) that need to be tackled, and the future of this new family of lasers.
This book is useful both for those who want to get initial information on the measurement of the antenna parameters, and for specialists directly involved in the experimental determination of the antenna parameters from the results of measuring the amplitude-phase distribution in the near zone of the antennas. Currently, the near-field method is the most common one for antenna measurements. In most books, an academic approach is given to the issue under consideration and it is difficult to use them for the direct organization of measurements. In many others, specific narrow issues are considered that are accessible to understanding only by highly qualified engineers/readers. The purpose of this book is to get rid of the above disadvantages by offering the reader a more accessible exposition and formulas by which appropriate computer programs can be written with minimal effort. The contents of this book allow interested specialists to be not only users of the near-field measuring facilities, but also help in understanding the principles of their work. This book is intended for engineers and specialists whose activities are related to experimental testing of radio characteristics of complex antenna systems, especially near-field measurements, and is also useful as a textbook for senior students in the field of "radioelectronics" and "radiophysics."
This book presents a detailed analytical and computational electromagnetic (CEM) treatment of guided electromagnetic (EM) wave propagation in independently time-varying dielectric medium, using the finite-difference time-domain (FDTD) simulation technique. The contents provide an extensive literature review, explaining the importance of time-varying media (temporal photonic crystals) in new exotic applications that involve rich EM phenomena such as parametric amplification, frequency conversion, non-reciprocal gain, electromagnetic energy accumulation, temporal coating and temporal aiming (beam-forming). A one-dimensional (1D) FDTD simulation paradigm is then formulated in this book, starting from Maxwell's equations and boundary conditions. The issues of hard/soft source realizations, perfectly matched layers (PMLs), choice of simulation parameters (cell-size and time-stepping) are thoroughly explained through new visualization tools. This book provides a unique combination of rigorous analytical techniques, several FDTD simulation examples with reproducible source-codes, and new visualization/post-processing mechanisms. The contents of this book should prove to be useful for students, research scholars, scientists and engineers, working in the field of applied electromagnetics, and aiming to design cutting-edge microwave/optical devices based on time-varying medium.
This book addresses 5G network capacity requirements with a new architecture for 5G Optical Backhaul Network. The author first describes the challenges for 5G backhaul network requirements and then the details of an Optical Backhaul Network for 5G. The author describes an architecture, in which small cells deploy as a cluster (i.e., 3-5 small cells in one cluster), where one small cell works as an aggregation point using an optical transceiver to backhaul the aggregated traffic to the nearest optical network unit, before it then goes to the core network. This book also illustrates the optical link budget analysis that can be used to determine the availability and the performances of the optical backhaul link in different deployment scenarios and different weather conditions. Provides a single-source reference to the basics of free space laser communication with ambient light compensation; Offers timely information, blending theory and practice; Written to be accessible to readers with varying backgrounds, including numerous illustrations; Provides hands-on experience through practical examples, which can be put to work to deploy and optimize cellular networks.
This book highlights the innovative applications of electromagnetics, optics, thermodynamics theories in creating methods for physical-layer collision prevention- "physical anti-collision" in radio frequency identification (RFID) systems. Using engineering mathematical methods as the core of detection and control algorithm design, it proposes semi-physical verification and detection techniques to the dynamic performance testing in RFID systems. The book also introduces the methods to build semi-physical hardware platforms using photoelectric sensing technology. The book provides valuable ideas to the applications of Internet of Things (IOT) systems in smart logistics, car networking, food traceability, anti-counterfeiting and other livelihood fields. It is worth reading for all researchers in IOT and optoelectronic engineering related industries. |
You may like...
Decorative Plasterwork in Great Britain
Geoffrey Beard, Jeff Orton, …
Hardcover
R4,272
Discovery Miles 42 720
|