Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Microwave technology
Microwave and millimeter-wave (mm-wave) circuits and systems have been widely employed in various emerging technologies such as 5G and beyond wireless mobile communication systems, autonomous driving, electronic warfare, and radar systems. To better understand the benefits, challenges, and opportunities of this technology, further study is required. The Handbook of Research on Emerging Designs and Applications for Microwave and Millimeter Wave Circuits describes the latest advances in microwave and mm-wave applications and provides state-of-the-art research in the domain of microwave, mm-wave, and THz devices and systems. Covering key topics such as antennas, circuits, propagation, and energy harvesting, this major reference work is ideal for computer scientists, industry professionals, researchers, academicians, practitioners, scholars, instructors, and students.
Substrate integrated waveguide (SIW) technology is a twenty-first century transmission line that has evolved recently to open new doors to the development of efficient circuits and devices operating in the microwave and millimeter-wave frequency range. Microstrip circuits and devices are inefficient at high frequency applications and require very stringent manufacturing tolerances when used to implement microwave and millimeter-wave components. This is as a result of the fact that wavelengths are short at higher frequencies. Waveguide circuits and devices are preferred for higher frequency applications, but they are expensive and difficult to manufacture. It is also very challenging to integrate a waveguide device with planar devices in its vicinity. The SIW bridges the gap between the traditional air-filled waveguide and planar transmission lines such as microstrip. Practical Approach to Substrate Integrated Waveguide (SIW) Diplexer: Emerging Research and Opportunities is an essential reference source that discusses the development of efficient circuits and devices operating in the microwave and millimeter-wave frequency range through the use of substrate integrated waveguides. Featuring research on topics such as microstrip resonators, circuit model analysis, and quality factor extraction, this book is ideally designed for researchers, engineers, scientists, developers, scholars, practitioners, educators, policymakers, and students.
Contemporary high-frequency engineering design heavily relies on full-wave electromagnetic (EM) analysis. This is primarily due to its versatility and ability to account for phenomena that are important from the point of view of system performance. Unfortunately, versatility comes at the price of a high computational cost of accurate evaluation. Consequently, utilization of simulation models in the design processes is challenging although highly desirable. The aforementioned problems can be alleviated by means of surrogate modeling techniques, the most popular of which are data-driven models. Although a large variety of methods are available, they are all affected by the curse of dimensionality. This is especially pronounced in high-frequency electronics, where typical system responses are highly nonlinear. Construction of practically useful surrogates covering wide ranges of parameters and operating conditions is a considerable challenge.Surrogate Modeling for High-Frequency Design presents a selection of works representing recent advancements in surrogate modeling and their applications to high-frequency design. Some chapters provide a review of specific topics such as neural network modeling of microwave components, while others describe recent attempts to improve existing modeling methodologies. Furthermore, the book features numerous applications of surrogate modeling methodologies to design optimization and uncertainty quantification of antenna, microwave, and analog RF circuits.
Microwave tubes are vacuum electron devices used for the generation and amplification of radio frequencies in the microwave range. An established technology area, the use of tubes remains essential in the field today for high-power applications. The culmination of the author's 50 years of industry experience, this authoritative resource offers you a thorough understanding of the operations and major classes of microwave tubes. Minimizing the use of advanced mathematics, the book places emphasis on clear qualitative explanations of phenomena. This practical reference serves as an excellent introduction for newcomers to the field and offers established tube engineers a comprehensive refresher. Professionals find coverage of all major tube classifications, including klystrons, traveling wave tubes (TWTs), magnetrons, cross field amplifiers, and gyrotrons.
This book presents the design requirements of antenna integration for modern commercial devices such as smartphones, dongles, and access points. Practical use-case scenarios of smartphone and the design process of the antenna system for the same are highlighted. The feasibility of scaling up sub-6GHz to mmWave antennas is also discussed in detail followed by a plethora of design examples which could be panel mounted to modern-day commercial smartphones. The unique requirement of gain switchability is introduced with feasible practical antenna designs. High efficiency antennas for 5G base stations is introduced along with a design example on planar all-metallic antenna. Beam switchability requirement for base station is illustrated with a couple of compact antenna system examples. Variety of feeding techniques for mmWave antennas is elaborated in this book. Finally, low-cost antenna designs for future wireless devices are illustrated.
This book presents an overview of both the theory and experimental methods required to realize high efficiency solar absorber devices. It begins with a historical description of the study of spectrally selective solar absorber materials and structures based on optical principles and methods developed over the past few decades. The optical properties of metals and dielectric materials are addressed to provide the background necessary to achieve high performance of the solar absorber devices as applied in the solar energy field. In the following sections, different types of materials and structures, together with the relevant experimental methods, are discussed for practical construction and fabrication of the solar absorber devices, aiming to maximally harvest the solar energy while at the same time effectively suppressing the heat-emission loss. The optical principles and methods used to evaluate the performance of solar absorber devices with broad applications in different physical conditions are presented. The book is suitable for graduate students in applied physics, and provides a valuable reference for researchers working actively in the field of solar energy.
This book presents contributions of deep technical content and high scientific quality in the areas of electromagnetic theory, scattering, UWB antennas, UWB systems, ground penetrating radar (GPR), UWB communications, pulsed-power generation, time-domain computational electromagnetics, UWB compatibility, target detection and discrimination, propagation through dispersive media, and wavelet and multi-resolution techniques. Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Like previous books in this series, Ultra-Wideband Short-Pulse Electromagnetics 10 serves as an essential reference for scientists and engineers working in these applications areas.
This book introduces readers to the polarimetric synthetic aperture radar (PolSAR) system, its information processing, and imaging applications. The content is divided into three main parts: Part I, on the research scope of PolSAR, addresses the underlying theory and system design, polarimetric SAR interferometry (PolInSAR), compact PolSAR, and calibration of PolSAR. Part II, which focuses on information processing, highlights the new theories and methods used in PolSAR, such as statistical properties analysis for images, speckle reduction, image enhancement, polarimetric target decomposition, and classification of PolSAR target detection. In turn, Part III, on the applications of polarimetric SAR, discusses the geophysical parameter retrieval of PolSAR data, polarimetric interferometric SAR information processing, compact polarimetric interferometric SAR information processing, and the effects of terrain tilt in azimuth direction on PolSAR data. The book provides a comprehensive and systematic guide to the system, integrating theory and practice, and has a highly application-oriented focus. Presenting new theories, methods and achievements made in polarimetric microwave imaging in recent years, it offers a valuable asset for researchers, engineers and scientists in the area of remote sensing and radar imaging. It can also be used as a reference book for university educators and graduate students.
This book covers a wide range of topics related to functional dyes, from synthesis and functionality to application. Making a survey of recent progress in functional dye chemistry, it provides an opportunity not only to understand the structure-property relationships of a variety of functional dyes but also to know how they are applied in practical use, from electronic devices to biochemical analyses. From classic dyes such as cyanines, squaraines, porphyrins, phthalocyanines, and others to the newest functional -conjugation systems, various types of functional dyes are dealt with extensively in the book, focusing especially on the state of the art and the future. Readers will benefit greatly from the scientific context in which organic dyes and pigments are comprehensively explained on the basis of chemistry.
This comprehensive handbook provides readers with a single-source reference to the theoretical fundamentals, physical mechanisms and principles of operation of all known microwave devices and various radars. The author discusses proven methods of computation and design development, process, schematic, schematic-technical and construction peculiarities of each breed of the microwave devices, as well as the most popular and original technical solutions for radars. Coverage also includes the history of creation of the most widely used radars, as well as guidelines for their potential upgrading. Offers readers a comprehensive, systematized view of all contemporary knowledge, acquired during the last 20 years, on radars and related disciplines; Provides a single-source reference on the physical mechanisms and principles of operation of the basic components of radio location devices, including theoretical aspects of designing the necessary, high-efficiency electronic devices and systems, as well as key, practical methods of computation and design; Presents complex topics using simple language, minimizing mathematics.
This book highlights many fundamental aspects of optical fiber transmission engineering while also focusing on current state of the art applications and working examples of digital coherent optical communications. Major engineering themes are reviewed and analyzed in this book, including spectral and time-domain characteristics of multi-level pseudo-random PAM signals, optical QAM and SSB complex modulations and impulse response engineering of linear amplifiers used in next-generation Gbaud transmission systems. This book is balanced between theoretical and numerical simulation approaches, showing numerous working examples developed in Matlab. Presents an in-depth analysis of pseudo-random multi-level signals and high-order complex modulations to support coherent terabit transmission systems; Provides a unified approach to challenging engineering issues encountered in the design of Giga-baud coherent optical transmission systems using high-order complex modulation formats; Reviews engineering themes and provides in-depth analysis, modeling and quantitative examples and solutions of state of the art and future applications.
This book presents the emerging regime of zero refractive index photonics, involving metamaterials that exhibit effectively zero refractive index. Metamaterials are artificial structures whose optical properties can be tailored at will. With metamaterials, intriguing and spellbinding phenomena like negative refraction and electromagnetic cloaking could be realized, which otherwise seem unnatural or straight out of science fiction. Zero index metamaterials are also seen as a means of boosting nonlinear properties and are believed to have strong prospects for being useful in nonlinear optical applications. In summary, this book highlights almost everything currently available on zero index metamaterials and is useful for professionally interested and motivated readers.
Wireless communications have become invaluable in the modern world. The market is going through a revolutionary transformation as new technologies and standards endeavor to keep up with demand for integrated and low-cost mobile and wireless devices. Due to their ubiquity, there is also a need for a simplification of the design of wireless systems and networks. The Handbook of Research on Advanced Trends in Microwave and Communication Engineering showcases the current trends and approaches in the design and analysis of reconfigurable microwave devices, antennas for wireless applications, and wireless communication technologies. Outlining both theoretical and experimental approaches, this publication brings to light the unique design issues of this emerging research, making it an ideal reference source for engineers, researchers, graduate students, and IT professionals.
This book is devoted to the theoretical and experimental investigation of the optoelectronic oscillator (OEO) with direct and external modulation of laser emission. Such devices, sources of precision radio frequency oscillations using laser excitation, are novel and technologically relevant, with manifold possible applications. The book includes a review of the present state of the theory and generation techniques in microwave and mm-wave ranges for traditional and optoelectronic oscillators, description of OEO construction and operation principles, theoretical oscillation analysis and mathematical description of the relevant semi-classical laser physics, and investigation of the power spectral density of noises. Technical features and advantages of OEOs with external and direct modulation of laser emission are discussed together with functional diagrams. The characteristics of OEOs are compared with other traditional RF oscillators, such as quartz, surface acoustic waves, and oscillators with electromagnetic wave cavities. Special attention is paid to Q-factors and phase noises of RF carriers at small offsets. The authors discuss the technical characteristics of modern optoelectronic methods for precision RF oscillation formation, such as commercial large-dimension and compact quantum frequency standards with optical pumping on cesium and rubidium cells. This book is aimed at scientists and engineers in academia and industry who work with sources of microwave and mm-wave signals.
This book addresses 5G network capacity requirements with a new architecture for 5G Optical Backhaul Network. The author first describes the challenges for 5G backhaul network requirements and then the details of an Optical Backhaul Network for 5G. The author describes an architecture, in which small cells deploy as a cluster (i.e., 3-5 small cells in one cluster), where one small cell works as an aggregation point using an optical transceiver to backhaul the aggregated traffic to the nearest optical network unit, before it then goes to the core network. This book also illustrates the optical link budget analysis that can be used to determine the availability and the performances of the optical backhaul link in different deployment scenarios and different weather conditions. Provides a single-source reference to the basics of free space laser communication with ambient light compensation; Offers timely information, blending theory and practice; Written to be accessible to readers with varying backgrounds, including numerous illustrations; Provides hands-on experience through practical examples, which can be put to work to deploy and optimize cellular networks.
Omnidirectional antenna with high gain, low profile, vertical polarization, even CP polarization is very difficult to design, although it is from the dipole. In this book, a novel idea that the running wave in the coaxial wire is disturbed by the orthogonal slot array on the cylindrical metal shell is introduced, which radiates the CP wave in omni-direction. When feeding on two ends of the coaxial wire respectively, there will appear left hand circularly polarized (LHCP) omnidirectional radiation or right hand circularly polarized (RHCP) omnidirectional radiation. By introducing the T-shaped feed structure, the coaxial wire with slot array can conveniently produce the LHCP and RHCP radiation diversity with one end feeding. In the further, combining with the directional antenna, it will generate the pattern diversity in the half-sphere space. The antenna of the coaxial wire with slot array can further transform into conical CP beam antenna if the coaxial wire becomes into a conical frustum. By introducing the PIN diode into the slot, the antenna of the coaxial wire with slot array can radiate the reconfigurable directional beam by switching the states of the PIN diodes. By introducing a novel switchable microwave circuit, the omnidirectional /directional pattern switchable antenna can be realized easily.This book proposes a continues method to develop the potentialities of the omnidirectional antenna. And the readers can study the method or ideas of the omnidirectional slots antenna, even graft the CP or diversity methods to other antennae.
This book presents the principles and applications of optical fiber communication based on digital signal processing (DSP) for both single and multi-carrier modulation signals. In the context of single carrier modulation, it describes DSP for linear and nonlinear optical fiber communication systems, discussing all-optical Nyquist modulation signal generation and processing, and how to use probabilistic and geometrical shaping to improve the transmission performance. For multi-carrier modulation, it examines DSP-based OFDM signal generation and detection and presents 4D and high-order modulation formats. Lastly, it demonstrates how to use artificial intelligence in optical fiber communication. As such it is a useful resource for students, researches and engineers in the field of optical fiber communication.
This book covers a diverse cross section of this interdisciplinary research field, with contributions grouped into four categories: laser-induced filamentation; atoms and molecules in a laser field; interaction of solid materials with a coherent light field; and ion acceleration and ionization of atoms in super intense laser fields. This book series presents up-to-date reviews of advances in this interdisciplinary research field, spanning atomic and molecular physics, as well as molecular and optical science, which have been stimulated by the recent developments in ultrafast laser technologies. Each book compiles peer-reviewed articles by researchers at the forefront of their particular subfields. All the chapters include an overview to allow graduate students and researchers unfamiliar with the subfield to grasp the importance and attractions of the topic covered, followed by reports of cutting-edge discoveries.
This book outlines various synthetic approaches, tuneable physical properties, and device applications of core/shell quantum dots (QDs). Core/shell QDs have exhibited enhanced quantum yield (QY), suppressed photobleaching/blinking, and significantly improved photochemical/physical stability as compared to conventional bare QDs. The core-shell structure also promotes the easy tuning of QDs' band structure, leading to their employment as attractive building blocks in various optoelectronic devices. The main objective of this book is to create a platform for knowledge sharing and dissemination of the latest advances in novel areas of core/shell QDs and relevant devices, and to provide a comprehensive introduction and directions for further research in this growing area of nanomaterials research.
This guide to the theory and practice of RF power amplifier (PA) design for modern communications systems aims to help readers tackle PA design with confidence and save time in determining the cause of malfunctioning hardware. The book explores a unified approach to the classification of higher amplifier modes based on overdrive considerations. The text contains a complete survey of RF PA efficiency enhancement and linearization techniques and aims to help the reader design suitable matching networks which provide correct fundamental harmonic terminations for conventional high efficiency PA modes. It also provides an understanding of the class D, E and F modes and their feasibility at microwave frequencies and uses envelope simulation techniques to analyze the effects of distortion in overdriven PAS. Finally, the text discusses the maintenance of high efficiency operation at low points in an amplitude modulated signal envelope including detailed coverage of the Doherty, Chireix and Kahn techniques, it explores the possibilities and limitations of linearization methods and analyzes PA stability and oscillation problems.
This book covers selected topics of automated logic synthesis dedicated to FPGAs. The authors focused on two main problems: decomposition of the multioutput functions and technology mapping. Additionally, the idea of using binary decision diagrams (BDD) in these processes was presented. The book is a scientific monograph summarizing the authors' many years of research. As a result, it contains a large number of experimental results, which makes it a valuable source for other researchers. The book has a significant didactic value. Its arrangement allows for a gradual transition from basic things (e.g., description of logic functions) to much more complex issues. This approach allows less advanced readers to better understand the described problems. In addition, the authors made sure that the issues described in the book were supported by practical examples, thanks to which the reader can independently analyze even the most complex problems described in the book. |
You may like...
Photon Counting Detectors for X-ray…
Hiroaki Hayashi, Natsumi Kimoto, …
Hardcover
R2,656
Discovery Miles 26 560
Nanomaterials for Luminescent Devices…
Swapna S Nair, Reji Philip
Hardcover
R3,490
Discovery Miles 34 900
Biomedical Optical Sensors…
Richard De La Rue, Hans Peter Herzig, …
Hardcover
R4,246
Discovery Miles 42 460
Advances in Communication Systems and…
J. Jayakumari, George K. Karagiannidis, …
Hardcover
R5,628
Discovery Miles 56 280
Introduction to Microelectromechanical…
Hector J de los Santos
Hardcover
R3,333
Discovery Miles 33 330
Mathematical Analysis and Simulation of…
Idoia Cortes Garcia
Hardcover
R4,228
Discovery Miles 42 280
Flash Lamp Annealing - From Basics to…
Lars Rebohle, Slawomir Prucnal, …
Hardcover
R3,543
Discovery Miles 35 430
|