![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Microwave technology
This book describes the characterization of liquid crystal materials at microwave frequencies and the usage of these materials in reconfigurable planar antennas and in their electrical tunable components. It reports for the first time the realization of a two-dimensional electronic beam steering antenna and polarization agile planar antennas with liquid crystal display technology. It gives a detailed description of all the theoretical analyses, modeling and design methods that were involved in the realization of these devices as well as their validation using measurement of demonstrative prototypes. This book also shows that low profile, low cost, high gain, electronic beam steering and polarization agile antennas can be fabricated in larger sizes by using existing automated liquid crystal display manufacturing techniques. The innovative ideas and method described in this work represent a considerable advancement in the field of electronically reconfigurable antennas based on liquid crystal technology and are expected to draw significant interest in the future. Such antennas may become important, for example, in mobile terminals integrated into the body of laptops (in the cover) or of automobiles (in the rooftop), ships or boats, for which flat, low-profile and low-cost antennas are required.
The aim of this book is to serve as a design reference for students and as an up-to-date reference for researchers. It also acts as an excellent introduction for newcomers to the field and offers established rf/microwave engineers a comprehensive refresher. The content is roughly classified into two - the first two chapters provide the necessary fundamentals, while the last three chapters focus on design and applications. Chapter 2 covers detailed treatment of transmission lines. The Smith chart is utilized in this chapter as an important tool in the synthesis of matching networks for microwave amplifiers. Chapter 3 contains an exhaustive review of microstrip circuits, culled from various references. Chapter 4 offers practical design information on solid state amplifiers, while Chapter 5 contains topics on the design of modern planar filters, some of which were seldom published previously. A set of problems at the end of each chapter provides the readers with exercises which are compiled from actual university exam questions. An extensive list of references is available at the end of each chapter to enable readers to obtain further information on the topics covered.
Microwave tube transmitters have many applications in radar, communications and electronic countermeasures. The transmitter sub-system is built from a microwave tube and a High Voltage Power Supply (HVPS) with a modulator. In some cases additional RF circuitry for driving and protecting the tube is included. This is the first book to provide, under one cover, a comprehensive and detailed description of both microwave tubes and HVPS/modulators and how to successfully integrate them for applications in radar, communications and electronic countermeasures. This practically-oriented book is intended to fulfil the needs of engineers who procure, specify, design, develop, test, manufacture, operate or service tubes, HVPS/modulators and complete tube transmitter systems.
This collection of the selected papers presented to the Second International Conference on Photonics, Optics and laser technology PHOTOPTICS 2014 covers the three main conference scientific areas of "Optics", "Photonics" and "Lasers". The selected papers, in two classes full and short, result from a double blind review carried out by conference Program Committee members who are highly qualified experts in the conference topic areas.
This reference is for anyone involved with microwave design. It tackles the practical aspects of microwave statistical design and introduces statistical design techniques that encompass many different applications. This presentation focuses on two main example areas - microwave circuits and systems - but any application with a complex relation between design variables and performance and design variable uncertainty can benefit from statistical design.
Analog Circuit Design contains the contribution of 18 tutorials of
the 20th workshop on Advances in Analog Circuit Design. Each part
discusses a specific to-date topic on new and valuable design ideas
in the area of analog circuit design. Each part is presented by six
experts in that field and state of the art information is shared
and overviewed. This book is number 20 in this successful series of
Analog Circuit Design, providing valuable information and excellent
overviews of:
This book introduces the basic framework of advanced focal plane technology based on the third-generation infrared focal plane concept. The essential concept, research advances, and future trends in advanced sensor arrays are comprehensively reviewed. Moreover, the book summarizes recent research advances in HgCdTe/AlGaN detectors for the infrared/ultraviolet waveband, with a particular focus on the numerical method of detector design, material epitaxial growth and processing, as well as Complementary Metal-Oxide-Semiconductor Transistor readout circuits. The book offers a unique resource for all graduate students and researchers interested in the technologies of focal plane arrays or electro-optical imaging sensors.
This thesis covers a broad range of interdisciplinary topics concerning electromagnetic-acoustic (EM-Acoustic) sensing and imaging, mainly addressing three aspects: fundamental physics, critical biomedical applications, and sensing/imaging system design. From the fundamental physics perspective, it introduces several highly interesting EM-Acoustic sensing and imaging methods, which can potentially provide higher sensitivity, multi-contrast capability, and better imaging performance with less distortion. From the biomedical applications perspective, the thesis introduces useful techniques specifically designed to address selected challenging biomedical applications, delivering rich contrast, higher sensitivity and finer spatial resolution. Both phantom and ex vivo experiments are presented, and in vivo validations are progressing towards real clinical application scenarios. From the sensing and imaging system design perspective, the book proposes several promising sensing/imaging prototypes. Further, it offers concrete suggestions that could bring these systems closer to becoming "real" products and commercialization, such as replacing costly lasers with portable laser diodes, or integrating transmitting and data recording on a single board.
Combining a general introduction to Gaussian beams and quasioptical propagation with practical applications, Quasioptical Systems provides a state-of-the-art treatment of the design of low-loss, broadband systems at microwave to submillimeter wavelengths. The approach presented involves utilizing a beam with a Gaussian distribution of field strength perpendicular to its axis, which in turn propagates in a simple, predictable fashion.
Electronic structure and physical properties of strongly correlated materials containing elements with partially filled 3d, 4d, 4f and 5f electronic shells is analyzed by Dynamical Mean-Field Theory (DMFT). DMFT is the most universal and effective tool used for the theoretical investigation of electronic states with strong correlation effects. In the present book the basics of the method are given and its application to various material classes is shown. The book is aimed at a broad readership: theoretical physicists and experimentalists studying strongly correlated systems. It also serves as a handbook for students and all those who want to be acquainted with fast developing filed of condensed matter physics.
"Reconfigurable RF Power Amplifiers on Silicon for Wireless Handsets" is intended to designers and researchers who have to tackle the efficiency/linearity trade-off in modern RF transmitters so as to extend their battery lifetime. High data rate 3G/4G standards feature broad channel bandwidths, high dynamic range and critical envelope variations which generally forces the power amplifier (PA) to operate in a low efficiency "backed-off" regime. Classic efficiency enhancement techniques such as Envelope Elimination and Restoration reveal to be little compliant with handset-dedicated PA implementation due to their channel-bandwidth-limited behavior and their increased die area consumption and/or bill-of-material. The architectural advances that are proposed in this book circumvent these issues since they put the stress on low die-area /low power-consumption control circuitry. The advantages of silicon over III/V technologies are highlighted by several analogue signal processing techniques that can be implemented on-chip with a power amplifier. System-level and transistor-level simulations are combined to illustrate the principles of the proposed power adaptive solutions. Measurement on BICMOS demonstrators allows validating the functionality of dynamic linearity/efficiency management. In "Reconfigurable RF Power Amplifiers on Silicon for Wireless Handsets," PA designers will find a review of technologies, architectures and theoretical formalisms (Volterra series...) that are traditionally related to PA design. Specific issues that one encounters in power amplifiers (such as thermal / memory effects, stability, VSWR sensitivity...) and the way of overcoming them are also extensively considered throughout this book.
Few books exist that cover the hot field of second-generation spintronic devices, despite their potential to revolutionize the IT industry.Compiling the obstacles and progress of spin-controlled devices into one source, Spintronic Materials and Technology presents an in-depth examination of the most recent technological spintronic developments. Featuring contributions from active researchers and leading experts, the book chronicles the main research challenges in spintronics. It first depicts the different classes of materials systems currently under investigation for use in spintronic devices. The contributors also address issues concerning the operation of spintronic devices, such as the new principle for future devices that use spin-polarized current. This promises to enable switching of individual spin components of the device while avoiding crosstalk at the nanoscale. The book concludes with descriptions of both Si and III-V semiconductor-based spin transistors and the integration of spin technology with photonics. The second-generation spintronic devices discussed in Spintronic Materials and Technology will not only improve the existing capabilities of electronic transistors, but will enable future computers to run faster and consume less power.
In 1991 this author published a monograph l] based on his experience teaching microwave hybrid materials and processing technology at the annual ISHM (now the International Microelectronics and Packaging Society, IMAPS) symposia. Since that time, the course has been presented at that venue and on-site at a number of industrial and government organizations. The course has been continually revised to reflect the many evolutionary changes in materials and processes. Microwave technology has existed for almost 175 years. It was only after the invention of the klystron, just before World War II, that microwave design and manufacture moved from a few visionaries to the growth the industry sees today. Over the last decade alone there have been exploding applications for all types of high frequency electronics in the miltary, automotive, wireless, computer, telecommunications and medical industries. These have placed demands, unimaginable a decade ago, on designs, materials, processes and equipment to meet the ever expanding requirements for increasingly reliable, smaller, faster and lower cost circuits.
Comprehensive in scope, this book covers the latest progresses of theories, technologies and applications of LEDs based on III-V semiconductor materials, such as basic material physics, key device issues (homoepitaxy and heteroepitaxy of the materials on different substrates, quantum efficiency and novel structures, and more), packaging, and system integration. The authors describe the latest developments of LEDs with spectra coverage from ultra-violet (UV) to the entire visible light wavelength. The major aspects of LEDs, such as material growth, chip structure, packaging, and reliability are covered, as well as emerging and novel applications beyond the general and conventional lightings. This book, written by leading authorities in the field, is indispensable reading for researchers and students working with semiconductors, optoelectronics, and optics. Addresses novel LED applications such as LEDs for healthcare and wellbeing, horticulture, and animal breeding; Editor and chapter authors are global leading experts from the scientific and industry communities, and their latest research findings and achievements are included; Foreword by Hiroshi Amano, one of the 2014 winners of the Nobel Prize in Physics for his work on light-emitting diodes.
Millimeter-Wave Waveguides is a monograph devoted to open waveguides for millimeter wave applications. In the first chapters, general waveguide theory is presented (with the emphasis on millimeter wave applications). Next, the book systematically describes the results of both theoretical and experimental studies of rectangular dielectric rod waveguides with high dielectric permittivities. Simple and accurate methods for propagation constant calculations for isotropic as well as anisotropic dielectric waveguides are described. Both analytical and numerical approaches are covered. Different types of transitions have been simulated in order to find optimal configurations as well as optimal dimensions of dielectric waveguides for the frequency band of 75-110 GHz. Simple and effective design is presented. The experimental studies of dielectric waveguides show that Sapphire waveguide can be utilized for this frequency band as a very low-loss waveguide. Design of antennas with low return loss based on dielectric waveguides is also described.
On June 1St 2004 the Faculty of Electrical Engineering and Information Technology of the Technische Universitat Miinchen bestowed the degree of the doctor honoris causa to Leopold B. Felsen, for extraordinary achievements in the theory of electromag netic fields. On this occasion on June 1St and 2nd 2004 at the Technische Universitat Miinchen a symposium on "Fields, Networks, Computational Methods, and Systems: A Modern View of Engineering Electrodynamics" in honor of Leopold B. Felsen was organized. The symposium topic focused on an important area of Leopold Felsen research interests and, as the title emphasizes, on a modern view of applied Electro dynamics. While the fundamental physical laws of electrodynamics are well known, research in this field is experiencing a steady continuous growth. The problem -solving approaches of, say, twenty years ago may seem now fairly obsolete since considerable progress has been made in the meantime. In this monograph we collect samples of present day state of the art in dealing with electromagnetic fields, their network theory representation, their computation and, finally, on system applications. The network formulation of field problems can improve the problem formulation and also contribute to the solution methodology. Network theory systematic approaches for circuit analysis are based on the separation of the circuit into the connection circuit and the circuit elements. Many applications in science and technology rely on computations of the electromagnetic field in either man-made or natural complex structures."
Provides a comprehensive guide to measurements with lasers Examines the design of optical and laser-based instruments Reviews the development of measurement strategies Includes two new chapters on self-mixing interferometry and quantum sensing Includes end of chapter problems
This reference provides a complete discussion of the conversion from standard lead-tin to lead-free solder microelectronic assemblies for low-end and high-end applications. Written by more than 45 world-class researchers and practitioners, the book discusses general reliability issues concerning microelectronic assemblies, as well as factors specific to the tin-rich replacement alloys commonly utilized in lead-free solders. It provides real-world manufacturing accounts of the introduction of reduced-lead and lead-free technology and discusses the functionality and cost effectiveness of alternative solder alloys and non-solder alternatives replacing lead-tin solders in microelectronics.
This second edition is an extended version of the first edition of Geometrical Charged-Particle Optics. The updated reference monograph is intended as a guide for researchers and graduate students who are seeking a comprehensive treatment of the design of instruments and beam-guiding systems of charged particles and their propagation in electromagnetic fields. Wave aspects are included in this edition for explaining electron holography, the Aharanov-Bohm effect and the resolution of electron microscopes limited by diffraction. Several methods for calculating the electromagnetic field are presented and procedures are outlined for calculating the properties of systems with arbitrarily curved axis. Detailed methods are presented for designing and optimizing special components such as aberration correctors, spectrometers, energy filters monochromators, ion traps, electron mirrors and cathode lenses. In particular, the optics of rotationally symmetric lenses, quadrupoles, and systems composed of these elements are discussed extensively. Beam properties such as emittance, brightness, transmissivity and the formation of caustics are outlined. Relativistic motion and spin precession of the electron are treated in a covariant way by introducing the Lorentz-invariant universal time and by extending Hamilton's principle from three to four spatial dimensions where the laboratory time is considered as the fourth pseudo-spatial coordinate. Using this procedure and introducing the self action of the electron, its accompanying electromagnetic field and its radiation field are calculated for arbitrary motion. In addition, the Stern-Gerlach effect is revisited for atomic and free electrons.
The AlInGaN and ZnO materials systems have proven to be one of the scientifically and technologically important areas of development over the past 15 years, with applications in UV/visible optoelectronics and in high-power/high-frequency microwave devices. The pace of advances in these areas has been remarkable and the wide band gap community relies on books like the one we are proposing to provide a review and summary of recent progress.
This book comprises selected articles from the International Communications Conference (ICC) 2018 held in Hyderabad, India in 2018. It offers in-depth information on the latest developments in voice-, data-, image- and multimedia processing research and applications, and includes contributions from both academia and industry.
Aimed at systems designers and microwave engineers, this book provides readers with a sound understanding of this evolving field and enables them to apply this technology to a wide range of systems.
Unlike any other source in the field, this valuable reference clearly examines key aspects of the finite element method (FEM) for electromagnetic analysis of low-frequency electrical devices. The authors examine phenomena such as nonlinearity, mechanical force, electrical circuit coupling, vibration, heat, and movement for applications in the electrical, mechanical, nuclear, aeronautics, and transportation industries. Electromagnetic Modeling by Finite Element Methods offers a wide range of examples, including torque, vibration, and iron loss calculation; coupling of the FEM with mechanical equations, circuits, converters, and thermal effects; material modeling; and proven methods for hysteresis implementation into FEM codes. Providing experimental results and comparisons from the authors' personal research, Electromagnetic Modeling by Finite Element Methods supplies techniques to implement FEM for solving Maxwell's equations, analyze electrical and magnetic losses, determine the behavior of electrical machines, evaluate force distribution on a magnetic medium, simulate movement in electrical machines and electromagnetic devices fed by external circuits or static converters, and analyze the vibrational behavior of electrical machines.
This book presents a collection of extended contributions on the physics and application of optoelectronic materials and metamaterials. The book is divided into three parts, respectively covering materials, metamaterials and optoelectronic devices. Individual chapters cover topics including phonon-polariton interaction, semiconductor and nonlinear organic materials, metallic, dielectric and gyrotropic metamaterials, singular optics, parity-time symmetry, nonlinear plasmonics, microstructured optical fibers, passive nonlinear shaping of ultrashort pulses, and pulse-preserving supercontinuum generation. The book contains both experimental and theoretical studies, and each contribution is a self-contained exposition of a particular topic, featuring an extensive reference list. The book will be a useful resource for graduate and postgraduate students, researchers and engineers involved in optoelectronics/photonics, quantum electronics, optics, and adjacent areas of science and technology.
This book is intended for practitioners and applied researchers in remote sensing applications and also for graduate students in the field. This reference provides a surface scattering model covering the entire frequency axis instead of only high- or low-frequency models. The text includes extensive model behaviours and case studies and demonstrates the effectiveness of combining the models and neural networks to classify and retrieve terrain and rough surface parameters. |
You may like...
|