![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Microwave technology
This book constitutes the Final Report of COST Action 279, Analysis and DesignofAdvancedMultiserviceNetworkssupportingMultimedia, Mobility, andInterworking, a guided tour of the state-of-the-art work on diverse aspects of modern telecommunications networks design developed within this Action during the four years of its operation, started on July 1, 2001, and ended on June 30, 2005. As stated in its founding charter, its Memorandum of Understanding, the work area of COST 279 is the analysis, design, and control aspects of prese- day networks-quite a wide scope. Behind the unifying fac, ade put on by the Internet Protocol (IP) network layer, todays networks hide a mess of hete- geneity: heterogeneity at the level of applications, both concerning the traf?c they produce and the network Quality of Service (QoS) they require, and h- erogeneity at the level of network component subsystems, in particular an - creasingly important mobile/wireless access segment. A common ground for the treatment of this disparate set of topics was given by the strong meth- ological component contained in the approach followed in COST 279, with importance placed on the development and application, whenever possible, of analytical techniques and models for the mathematical understanding of the systems under study. The results expected from the Action ranged thus from mathematical models and algorithms as entities of own interest to the und- standing of systembehavior via their application."
Next generation optical communication systems will have to transport a significantly increased data volume at a reduced cost per transmitted bit. To achieve these ambitious goals optimum design is crucial in combination with dynamic adaptation to actual traffic demands and improved energy efficiency. In the first part of the book the author elaborates on the design of optical transmission systems. Several methods for efficient numerical simulation are presented ranging from meta-model based optimization to parallelization techniques for solving the nonlinear Schroedinger equation. Furthermore, fast analytical and semi-analytical models are described to estimate the various degradation effects occurring on the transmission line. In the second part of the book operational aspects of optical networks are investigated. Physical layer impairment-aware routing and regenerator placement are studied. Finally, it is analyzed how the energy efficiency of a multi-layer optical core network can be increased by dynamic adaptation to traffic patterns changing in the course of the day.
This book presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. It covers picosecond, femtosecond, and attosecond processes relevant to applications in physics, chemistry, biology, and engineering. Ultrafast technology has a profound impact in a wide range of applications, amongst them biomedical imaging, chemical dynamics, frequency standards, material processing, and ultrahigh-speed communications. This book summarizes the results presented at the 19th International Conference on Ultrafast Phenomena and provides an up-to-date view of this important and rapidly advancing field.
Including a systematic introduction to the fundamental principles of microwave radar, this text presents an extensive discussion of radar imaging. It also features information on image superresolution, automatic target recognition, moving target indication, and space-time adaptive processing (STAP).
This book deals with all aspects of industrial, scientififc and medical (ISM) applications of microwaves. The text covers not only the theoretical and applied aspects of electromagnetism, but also explores current research, industrial considerations and historical and regulatory issues. The book is completed by a listing of most of the laboratories in the world involved with microwave heating. The reader will find 176 addresses, including complete names, phone, fax and telex numbers, as well as 4000 references.
Provides coverage of the most efficient and effective methods of network analysis optimization and synthesis. A step-by-step guide to every aspect of the RF and microwave circuit design process - starting with a set of specifications and ending with hardware that performs as modeled the first time.
This book consists of the identification, characterization, and modeling of electromagnetic interferences in substations for the deployment of wireless sensor networks. The authors present in chapter 3 the measurement setup to record sequences of impulsive noise samples in the ISM band of interest. The setup can measure substation impulsive noise, in wide band, with enough samples per time window and enough precision to allow a statistical study of the noise. During the measurement campaign, the authors recorded around 120 noise sequences in different substations and for four ranges of equipment voltage, which are 25 kV, 230 kV, 315 kV and 735 kV. A characterization process is proposed, by which physical characteristics of partial discharge can be measured in terms of first- and second-order statistics. From the measurement campaign, the authors infer the characteristics of substation impulsive noise as a function of the substation equipment voltage, and can provide representative parameters for the four voltage ranges and for several existing impulsive noise models. The authors investigate in chapters 4 and 5 the modeling of electromagnetic interferences caused by partial discharge sources. First, the authors propose a complete and coherent approach model that links physical characteristics of high-voltage installations to the induced radio-interference spectra of partial discharge sources. The goodness-of-fit of the proposed physical model has been measured based on some interesting statistical metrics. This allows one to assess the effectiveness of the authors' approach in terms of first- and second-order statistics. Chapter 6 proposes a model based on statistical approach. Indeed, substation impulsive noise is composed of correlated impulses, which would require models with memory in order to replicate a similar correlation. Among different models, we have configured a Partitioned Markov Chain (PMC) with 19 states (one state for the background noise and 18 states for the impulse); this Markov-Gaussian model is able to generate impulsive noise with correlated impulse samples. The correlation is observable on the impulse duration and the power spectrum of the impulses. Our PMC model provides characteristics that are more similar to the characteristics of substation impulsive noise in comparison with other models, in terms of time and frequency response, as well as Probability Density Functions (PDF). Although PMC represents reliably substation impulsive noise, the model remains complex in terms of parameter estimation due to a large number of Markov states, which can be an obstacle for future wireless system design. In order to simplify the model, the authors decrease the number of states to 7 by assigning one state to the background noise and 6 states to the impulse and we call this model PMC-6. PMC-6 can generate realistic impulses and can be easily implemented in a receiver in order to mitigate substation impulsive noise. Representative parameters are provided in order to replicate substation impulsive noise for different voltage ranges (25-735 kV). Chapter 7, a generalized radio-noise model for substations is proposed, in which there are many discharges sources that are randomly distributed over space and time according to the Poisson field of interferers approach. This allows for the identification of some interesting statistical properties of moments, cumulants and probability distributions. These can, in turn, be utilized in signal processing algorithms for rapid partial discharge's identification, localization, and impulsive noise mitigation techniques in wireless communications in substations. The primary audience for this book is the electrical and power engineering industry, electricity providers and companies who are interested in substation automation systems using wireless communication technologies for smart grid applications. Researchers, engineers and students studying and working in wireless communication will also want to buy this book as a reference.
The main thrust of the rapid advance of microwave technology over the past four decades has been directed toward and powered by the development of new solid-state devices and circuits. In many cases, however, technological development has advanced with such speed that it has laxed the ability of professionals and educators to keep up with it, leaving both students and working electrical engineers with an incomplete knowledge of modern microwave technologies. Microwave Solid-State Circuits and Applications offers a comprehensive presentation of microwave technologies based on solid-state devices and circuits, with emphasis on operational principles and techniques for incorporating these devices into circuit applications. Fundamental design equations are derived and practical examples are given whenever possible. More than 300 illustrations serve to clarify principles and concepts under discussion, and a set of problems at the end of each chapter helps strengthen students' grasp of the subject. The book is organized into three sections: a review of fundamental principles in transmission lines and circuits, and semiconductor physics; two-terminal solid-state devices, circuits, and applications; and three-terminal solid-state devices, circuits, and applications. In addition, there is a special chapter on noise figures and some system parameters for receiver design. An ideal textbook for one-semester, senior-level or graduate courses in microwave solid-state circuits, this self-contained volume is also an excellent reference for practicing microwave, antenna, and solid-state engineers.
This book presents an innovative concept for the realization of sensors based on a planar metamaterial microwave array and shows their application in biomedical analysis and treatment. The sensors are able to transduce the dielectric properties of materials in their direct vicinity into an electric signal. The specific array organization permits a simultaneous analysis of several materials using a single readout signal or a relative characterization of one material where information about its spatial distribution can be extracted. Two applications of the designed sensors are described here: the first is a cytological screening using micro fluidic technology, which shows that the sensors may be integrated into lab-on-chip technologies; the second application regards the use of the sensor in both the analysis and treatment of organic tissues. The developed sensor is able not only to screen the tissues for abnormalities, but also, by changing the applied signals, to perform thermal ablation and treat the abnormalities in a highly focused way. Thus, the research described in this book represents a considerable advancement in the field of biomedical microwave sensing.
"Geolocation of RF Signals-Principles and Simulations" offers an overview of the best practices and innovative techniques in the art and science of geolocation over the last twenty years. It covers all research and development aspects including theoretical analysis, RF signals, geolocation techniques, key block diagrams, and practical principle simulation examples in the frequency band from 100 MHz to 18 GHz or even 60 GHz. Starting with RF signals, the book progressively examines various signal bands - such as VLF, LF, MF, HF, VHF, UHF, L, S, C, X, Ku, and, K and the corresponding geolocation requirements per band and per application - to achieve required performance objectives of up to 0 precision. Part II follows a step-by-step approach of RF geolocation techniques and concludes with notes on state-of-the-art geolocation designs as well as advanced features found in signal generator instruments. Drawing upon years of practical experience and using numerous examples and illustrative applications, Ilir Progri provides a comprehensive introduction to "Geolocation of RF Signals," and includes hands-on real world labs and applications using MATLAB in the areas of: RF signals specifications, RF geolocation distributed wireless communications networks and RF geolocation. "Geolocation of RF Signals-Principles and Simulations" will be of interest to government agency program managers industry professionals and engineers, academic researchers, faculty and graduate students who are interested in or currently designing, developing and deploying innovative geolocation of RF Signal systems."
To handle many standards and ever increasing bandwidth requirements, large number of filters and switches are used in transceivers of modern wireless communications systems. It makes the cost, performance, form factor, and power consumption of these systems, including cellular phones, critical issues. At present, the fixed frequency filter banks based on Film Bulk Acoustic Resonators (FBAR) are regarded as one of the most promising technologies to address performance -form factor-cost issues. Even though the FBARs improve the overall performances the complexity of these systems remains high. Attempts are being made to exclude some of the filters by bringing the digital signal processing (including channel selection) as close to the antennas as possible. However handling the increased interference levels is unrealistic for low-cost battery operated radios. Replacing fixed frequency filter banks by one tuneable filter is the most desired and widely considered scenario. As an example, development of the software based cognitive radios is largely hindered by the lack of adequate agile components, first of all tuneable filters. In this sense the electrically switchable and tuneable FBARs are the most promising components to address the complex cost-performance issues in agile microwave transceivers, smart wireless sensor networks etc. Tuneable Film Bulk Acoustic Wave Resonators discusses FBAR need, physics, designs, modelling, fabrication and applications. Tuning of the resonant frequency of the FBARs is considered. Switchable and tuneable FBARs based on electric field induced piezoelectric effect in paraelectric phase ferroelectrics are covered. The resonance of these resonators may be electrically switched on and off and tuned without hysteresis. The book is aimed at microwave and sensor specialists in the industry and graduate students. Readers will learn about principles of operation and possibilities of the switchable and tuneable FBARs, and will be given general guidelines for designing, fabrication and applications of these devices.
Microwave Physics and Techniques discusses the modelling and application of nonlinear microwave circuits and the problems of microwave electrodynamics and applications of magnetic and high Tc superconductor structures. Aspects of advanced methods for the structural investigation of materials and of MW remote sensing are also considered. The dual focus on both HTSC MW device physics and MW excitation in ferrites and magnetic films will foster the interaction of specialists in these different fields.
New, powerful mixed-mode scattering parameter techniques are earning rave reviews among wireless and microwave engineers, because they have proved to be highly effective design tools for optimizing the performance of integrated circuits, components, and systems. Now, for the first time, these techniques are explained in full detail by the inventors themselves. This groundbreaking guide uses the original research and application work in the field to describe mixed-mode S-parameter principles and provide practitioners with expert advice on how to use these tools for their own microwave design projects. The book includes over 150 illustrations that support key topics.
This practical book presents a Universal Design Procedure that can be applied to virtually all types of passive, active, linear, or nonlinear microwave components. It allows you to leave the complexities of network synthesis to computer software so that you can focus your attention on the versatility of synthesis procedures and their applications. Includes more than 170 illustrations and 230 equations.
This volume emphasizes the design and development of advanced switched-opamp architectures and techniques for low-voltage low-power switched-capacitor systems. It presents a novel multi-phase switched-opamp technique together with new system architectures that are critical in improving significantly the performance of switched-capacitor systems at low supply voltages.
Discusses process variation, model accuracy, design flow and many other practical engineering, reliability and manufacturing issues Gives a good overview for a person who is not an expert in modeling and simulation, enabling them to extract the necessary information to competently use modeling and simulation programs Written for engineering students and product design engineers
This book mainly focuses on the experimental research of rf breakdown and field emission with novel methods, including triggering rf breakdown with high intensity laser and pin-shaped cathodes as well as locating field emitters with a high resolution in-situ imaging system. With these methods, this book has analyzed the power flow between cells during rf breakdown, observed the evolution of field emission during rf conditioning and the dependence of field emission on stored energy, and studied the field emitter distribution and origination. The research findings greatly expand the understanding of rf breakdown and field emission, which will in turn benefit future study into electron sources, particle accelerators, and high gradient rf devices in general.
This book presents the proceedings of the International Conference on Wireless Intelligent and Distributed Environment for Communication (WIDECOM 2018), organized by SRM University, NCR Campus, New Delhi, India, February 16-18, 2018. The conference focuses on challenges with respect to the dependability of integrated applications and intelligence-driven security threats against the platforms supporting these applications. The WIDECOM 2018 proceedings features papers addressing issues related to the new dependability paradigms, design, control, and management of next generation networks, performance of dependable network computing and mobile systems, protocols that deal with network computing, mobile/ubiquitous systems, cloud systems, and Internet of Things (IoT) systems. The proceeding is a valuable reference for researchers, instructors, students, scientists, engineers, managers, and industry practitioners, in industry, in the aforementioned areas. The book's structure and content is organized in such a manner that makes it useful at a variety of learning levels. Presents the proceedings of the International Conference on Wireless Intelligent and Distributed Environment for Communication (WIDECOM 2018), organized by SRM University, NCR Campus, New Delhi, India, February 16-18, 2018; Includes an array of topics related to new dependability paradigms, design, control, and management of next generation networks, performance of dependable network computing and mobile systems, protocols that deal with network computing, mobile/ubiquitous systems, cloud systems, and Internet of Things (IoT) systems; Addresses issues related to the design and performance of dependable network computing and systems and to the security of these systems.
This work is aimed at practitioners wishing to gain a broader systems-based perspective of phase-locked loops; and is also suitable as a graduate text for engineering students. It provides detailed coverage of digital sampling effects in modern phase-locked frequency synthesizers from a systems perspective, and discusses all aspects of phase noise, its mathematical modelling and its impact upon different digital communication systems. Sections on building blocks for frequency synthesis using phase-locked loops, frequency synthesis using sampled-data control systems, and MASCET, are included.
Semiconductor power electronics plays a dominant role due its increased efficiency and high reliability in various domains including the medium and high electrical drives, automotive and aircraft applications, electrical power conversion, etc. Power/HVMOS Devices Compact Modeling will cover very extensive range of topics related to the development and characterization power/high voltage (HV) semiconductor technologies as well as modeling and simulations of the power/HV devices and smart power integrated circuits (ICs). Emphasis is placed on the practical applications of the advanced semiconductor technologies and the device level compact/spice modeling. This book is intended to provide reference information by selected, leading authorities in their domain of expertise. They are representing both academia and industry. All of them have been chosen because of their intimate knowledge of their subjects as well as their ability to present them in an easily understandable manner.
Laser measurement technology has evolved in the last years in a versatile and reflationary way. Today, its methods are indispensable for research and development activities as well as for production technology. Every physicist and engineer should therefore gain a working knowledge of laser measurement technology. This book closes the gap of existing textbooks. It introduces in a comprehensible presentation laser measurement technology in all its aspects. Numerous figures, graphs and tables allow for a fast access into the matter. In the first part of the book the important physical and optical basics are described being necessary to understand laser measurement technology. In the second part technically significant measuring methods are explained and application examples are presented. Target groups of this textbook are students of natural and engineering sciences as well as working physicists and engineers, who are interested to make themselves familiar with laser measurement technology and its fascinating potentials.
This book covers the latest advances in the techniques employed to manage the THz radiation and its potential uses. It has been subdivided in three sections: THz Detectors, THz Sources, Systems and Applications. These three sections will allow the reader to be introduced in a logical way to the physics problems of sensing and generation of the terahertz radiation, the implementation of these devices into systems including other components and finally the exploitation of the equipment for real applications in some different field. All of the sections and chapters can be individually addressed in order to deepen the understanding of a single topic without the need to read the whole book. The THz Detectors section will address the latest developments in detection devices based on three different physical principles: photodetection, thermal power detection, rectification. The THz Sources section will describe three completely different generation methods, operating in three separate scales: quantum cascade lasers, free electron lasers and non-linear optical generation. The Systems and Applications section will take care of introducing many of the aspects needed to move from a device to an equipment perspective: control of terahertz radiation, its use in imaging or in spectroscopy, potential uses in security, and will address also safety issues. The text book is at a level appropriate to graduate level courses up to researchers in the field who require a reference book covering all aspects of terahertz technology.
Microwave and millimeter-wave integrated circuits (MMICs) are of increasing im- portance in modern military and commercial wireless communication systems. Current trends are towards low-cost, high-density, multilevel,and multifunctional integration, cover- ingmillimeterand submillimeterwave regions.The integrationofdiverse subfunctions, such as light-wave devices, superconductor circuits, digital circuits and ferrite devices, together with conventional microwave or millimeter-wave devices, circuits and antennas, will allow implementation of large systems on a single chip. Research on advanced device concepts, 3-D interconnects, high-performance packaging methods, advanced CAD-tools, measure- ment and testing techniques, as weil as material and fabrication technologies, are being di- rected to meet these new challenges. Continuing on the series ofsymposia sponsored by the Weber Research Institute of Polytechnic University, an international symposium focusing on the current developments and new research initiatives for the next generation ofmicrowave and millimeter wave inte- grated circuits and systems was held at Brooklyn, New York,during September 11-13, 1996. The symposium was organizedas a3-dayevent,running mostly ina single-session format of regular papers and panel discussions, It was co-sponsored by the Army Research Office, Re- search Triangle Park, NC, in cooperation with the IEEE Microwave Theory and Techniques Society, the IEEE Antennas and Propagation Society, and IEEE Long Island and New York MetropolitanSections.The papers published in this volume are extended versionsofselected papers presented at this symposium. |
You may like...
Microwave Wireless Communications - From…
Antonio Raffo, Giovanni Crupi
Hardcover
R2,693
Discovery Miles 26 930
Microwave Active Circuit Analysis and…
Clive Poole, Izzat Darwazeh
Hardcover
Handbook of Research on Emerging Designs…
Jamal Zbitou, Mostafa Hefnawi, …
Hardcover
R8,027
Discovery Miles 80 270
Proceedings of 2018 International…
Ying-quan Peng, Xinyong Dong
Hardcover
R4,046
Discovery Miles 40 460
Practical Approach to Substrate…
Augustine Onyenwe Nwajana, Kenneth Siok Kiam Yeo
Hardcover
R5,317
Discovery Miles 53 170
|