Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Microwave technology
This book presents the technology of millimetre waves and Terahertz (THz) antennas. It highlights the importance of moderate and high-gain aperture antennas as key devices for establishing point-to-point and point-to-multipoint radio links for far-field and near-field applications, such as high data-rate communications, intelligent transport, security imaging, exploration and surveillance systems. The book provides a comprehensive overview of the key antenna technologies developed for the mm wave and THz domains, including established ones - such as integrated lens antennas, advanced 2D and 3D horn antennas, transmit and reflect arrays, and Fabry-Perot antennas - as well as emerging metasurface antennas for near-field and far-field applications. It describes the pros and cons of each antenna technology in comparison with other available solutions, a discussion supplemented by practical examples illustrating the step-by-step implementation procedures for each antenna type. The measurement techniques available at these frequency ranges are also presented to close the loop of the antenna development cycle. In closing, the book outlines future trends in various antenna technologies, paving the way for further developments. Presenting content originating from the five-year ESF research networking program 'Newfocus' and co-authored by the most active and highly cited research groups in the domain of mm- and sub-mm-wave antenna technologies, the book offers a valuable guide for researchers and engineers in both industry and academia.
This book covers the basic principles for understanding radio wave propagation for common frequency bands used in radio-communications. This includes achievements and developments in propagation models for wireless communication. This book is intended to bridge the gap between the theoretical calculations and approaches to the applied procedures needed for radio links design in a proper manner. The authors emphasize propagation engineering by giving fundamental information and explain the use of basic principles together with technical achievements. This new edition includes additional information on radio wave propagation in guided media and technical issues for fiber optics cable networks with several examples and problems. This book also includes a solution manual - with 90 solved examples distributed throughout the chapters - and 158 problems including practical values and assumptions.
This is a specialized book for researchers and technicians of universities and companies who are interested in the fundamentals of RF power semiconductors, their applications and market penetration.Looking around, we see that products using vacuum tube technology are disappearing. For example, branch tube TVs have changed to liquid crystal TVs, and fluorescent light have turned into LED. The switch from vacuum tube technology to semiconductor technology has progressed remarkably. At the same time, high-precision functionalization, miniaturization and energy saving have advanced. On the other hand, there is a magnetron which is a vacuum tube device for generating microwaves. However, even this vacuum tube technology has come to be replaced by RF power semiconductor technology. In the last few years the price of semiconductors has dropped sharply and its application to microwave heating and energy fields will proceed. In some fields the transition from magnetron microwave oscillator to semiconductor microwave oscillator has already begun. From now on this development will progress remarkably. Although there are several technical books on electrical systems that explain RF power semiconductors, there are no books yet based on users' viewpoints on actual microwave heating and energy fields. In particular, none have been written about exact usage and practical cases, to answer questions such as "What are the advantages and disadvantages of RF power semiconductor oscillator?", "What kind of field can be used?" and the difficulty of the market and application. Based on these issues, this book explains the RF power semiconductors from the user's point of view by covering a very wide range of fields.
This book describes new trends in the nanoscience of isotopic materials science. Assuming a background in graduate condensed matter physics and covering the fundamental aspects of isotopic materials science from the very beginning, it equips readers to engage in high-level professional research in this area. The books main objective is to provide insight into the question of why solids are the way they are, either because of how their atoms are bonded with one another, because of defects in their structure, or because of how they are produced or processed. Accordingly, it explores the science of how atoms interact, connects the results to real materials properties, and demonstrates the engineering concepts that can be used to produce or improve semiconductors by design. In addition, it shows how the concepts discussed are applied in the laboratory. The book addresses the needs of researchers, graduate students and senior undergraduate students alike. Although primarily written for materials science audience, it will be equally useful to those teaching in electrical engineering, materials science or even chemical engineering or physics curricula. In order to maintain the focus on materials concepts, however, the book does not burden the reader with details of many of the derivations and equations nor does it delve into the details of electrical engineering topics.
Details improved approaches to the design of power oscillators that employ more analysis and theory and less empirical work than conventional design procedures. It bridges fundamental device physics and the development and implementation of practical microwave and millimeterwave power oscillators.
This revised and updated edition of the well-received book by C. Klingshirn provides an introduction to and an overview of all aspects of semiconductor optics, from IR to visible and UV. It has been split into two volumes and rearranged to offer a clearer structure of the course content. Inserts on important experimental techniques as well as sections on topical research have been added to support research-oriented teaching and learning. Volume 1 provides an introduction to the linear optical properties of semiconductors. The mathematical treatment has been kept as elementary as possible to allow an intuitive approach to the understanding of results of semiconductor spectroscopy. Building on the phenomenological model of the Lorentz oscillator, the book describes the interaction of light with fundamental optical excitations in semiconductors (phonons, free carriers, excitons). It also offers a broad review of seminal research results augmented by concise descriptions of the relevant experimental techniques, e.g., Fourier transform IR spectroscopy, ellipsometry, modulation spectroscopy and spatially resolved methods, to name a few. Further, it picks up on hot topics in current research, like quantum structures, mono-layer semiconductors or Perovskites. The experimental aspects of semiconductor optics are complemented by an in-depth discussion of group theory in solid-state optics. Covering subjects ranging from physics to materials science and optoelectronics, this book provides a lively and comprehensive introduction to semiconductor optics. With over 120 problems, more than 480 figures, abstracts to each chapter, as well as boxed inserts and a detailed index, it is intended for use in graduate courses in physics and neighboring sciences like material science and electrical engineering. It is also a valuable reference resource for doctoral and advanced researchers.
This book is useful both for those who want to get initial information on the measurement of the antenna parameters, and for specialists directly involved in the experimental determination of the antenna parameters from the results of measuring the amplitude-phase distribution in the near zone of the antennas. Currently, the near-field method is the most common one for antenna measurements. In most books, an academic approach is given to the issue under consideration and it is difficult to use them for the direct organization of measurements. In many others, specific narrow issues are considered that are accessible to understanding only by highly qualified engineers/readers. The purpose of this book is to get rid of the above disadvantages by offering the reader a more accessible exposition and formulas by which appropriate computer programs can be written with minimal effort. The contents of this book allow interested specialists to be not only users of the near-field measuring facilities, but also help in understanding the principles of their work. This book is intended for engineers and specialists whose activities are related to experimental testing of radio characteristics of complex antenna systems, especially near-field measurements, and is also useful as a textbook for senior students in the field of "radioelectronics" and "radiophysics."
Based on a detailed analysis of the signal model of the moving target, this thesis focuses on the theories and applications of ground moving target indicator (GMTI) and ground moving target imaging (GMTIm) algorithms in synthetic aperture radar/ ground moving target indicator (SAR/GMTI mode), wide-area surveillance ground moving target indication (WAS-GMTI) mode and frequency modulated continuous wave synthetic aperture radar (FMCW SAR) systems. The proposed algorithms can not only indicate and image fast-moving targets, but are also effective in the context of slow-moving target processing. The system design scheme combines the mechanical scanning mode and the airborne SAR system, while the azimuth moving target indication algorithm employs the additional range walk migration induced by FMCW SAR systems. In addition, the non-ideal errors that deteriorate the performance of GMTIm algorithms in real SAR data processing are discussed, and suitable compensation methods are provided.>
This highly practical and self-contained guidebook explains the principles and major applications of digital hologram recording and numerical reconstruction (Digital Holography). A special chapter is designated to digital holographic interferometry with applications in deformation and shape measurement and refractive index determination. Applications in imaging and microscopy are also described. Spcial techniques such as digital light-in-flight holography, holographic endoscopy, information encrypting, comparative holography, and related techniques of speckle metrology are also treated
This book presents a comprehensive mathematical and computational approach for solving electromagnetic problems of practical relevance, such as electromagnetic scattering and the cavity problems. After an in-depth introduction to the mathematical foundations of isogeometric analysis, which discusses how to conduct higher-order simulations efficiently and without the introduction of geometrical errors, the book proves quasi-optimal approximation properties for all trace spaces of the de Rham sequence, and demonstrates inf-sup stability of the isogeometric discretisation of the electric field integral equation (EFIE). Theoretical properties and algorithms are described in detail. The algorithmic approach is, in turn, validated through a series of numerical experiments aimed at solving a set of electromagnetic scattering problems. In the last part of the book, the boundary element method is combined with a novel eigenvalue solver, a so-called contour integral method. An algorithm is presented, together with a set of successful numerical experiments, showing that the eigenvalue solver benefits from the high orders of convergence offered by the boundary element approach. Last, the resulting software, called BEMBEL (Boundary Element Method Based Engineering Library), is reviewed: the user interface is presented, while the underlying design considerations are explained in detail. Given its scope, this book bridges an important gap between numerical analysis and engineering design of electromagnetic devices.
This text sets out to provide a source of design techniques for leading to reduction in expense, size and weight of directional couplers and filters. It also gives step-by-step procedures for enhancing circuit performance. Numerous design examples and verified measured results for ultrawideband, bandpass, periodic and co-directional couplers are provided.
This book addresses the peculiarities of nonlinear wave propagation in waveguides and explains how the stratification depends on the waveguide and confinement. An example of this is an optical fibre that does not allow light to pass through a density jump. The book also discusses propagation in the nonlinear regime, which is characterized by a specific waveform and amplitude, to demonstrate so-called solitonic behaviour. In this case, a wave may be strongly localized, and propagates with a weak change in shape. In the waveguide case there are additional contributions of dispersion originating from boundary or asymptotic conditions. Offering concrete guidance on solving application problems, this essentially (more than twice) expanded second edition includes various aspects of guided propagation of nonlinear waves as well as new topics like solitonic behaviour of one-mode and multi-mode excitation and propagation and plasma waveguides, propagation peculiarities of electromagnetic waves in metamaterials, new types of dispersion, dissipation, electromagnetic waveguides, planetary waves and plasma waves interaction.The key feature of the solitonic behaviour is based on Coupled KdV and Coupled NS systems. The systems are derived in this book and solved numerically with the proof of stability and convergence. The domain wall dynamics of ferromagnetic microwaveguides and Bloch waves in nano-waveguides are also included with some problems of magnetic momentum and charge transport.
This revised edition of the author's classic 2006 text offers a comprehensively updated review of the field of relativistic nonlinear electrodynamics. It explores the interaction of strong and super-strong electromagnetic/laser radiation with the electromagnetic quantum vacuum and diverse types of matter - including free charged particles and antiparticles, acceleration beams, plasma and plasmous media. The appearance of laser sources of relativistic and ultra-relativistic intensities over the last decade has stimulated investigation of a large class of processes under such super-strong radiation fields. Revisions for this second edition reflect these developments and the book includes new chapters on Bremsstrahlung and nonlinear absorption of superintense radiation in plasmas, the nonlinear interaction of relativistic atoms with intense laser radiation, nonlinear interaction of strong laser radiation with Graphene, and relativistic nonlinear phenomena in solid-plasma targets under supershort laser pulses of ultrarelativistic intensities. The only book devoted to the subject of relativistic nonlinear electrodynamics, this second edition will be a valuable resource for graduate students and researchers involved in any aspect of the field, including those working with intense x-ray - gamma-ray lasers, the new generation of small size laser-plasma accelerators of superhigh energies and high-brightness particle beams.
Electroacoustic transducers (EAT) are devices, which transform electric energy to energy of acoustic fluctuations. Principles of action, design of transducers for work in air and water as well as for non-destructive control are described in the book. New technologies of designing EAT, not only expanding designing possibilities, are described. They also allow to create transducers with improved characteristics. In particular, methods to increase target capacity (sound pressure), decrease working (resonant) frequency of transducers and expand frequencies of projectors and sound receivers are developed. Methods and control units of transducers in batch production of transducers are described, too.
Presents state-of-the-art information on the various types of semiconductor phase shifters, and explains why different types hold tremendous potential for future phased arrays.
This book is devoted to theoretical methods used in the extreme circumstances of very strong electromagnetic fields. The development of high power lasers, ultrafast processes, manipulation of electromagnetic fields and the use of very fast charged particles interacting with other charges requires an adequate theoretical description. Because of the very strong electromagnetic field, traditional theoretical approaches, which have primarily a perturbative character, have to be replaced by descriptions going beyond them. In the book an extension of the semi-classical radiation theory and classical dynamics for particles is performed to analyze single charged atoms and dipoles submitted to electromagnetic pulses. Special attention is given to the important problem of field reaction and controlling dynamics of charges by an electromagnetic field.
This book unites two different technologies: parasitic antenna arrays driven via analogue circuits that control the electromagnetic waves generated by the antenna array; and MIMO technology for multi-antenna arrays, typically driven by digital techniques in the baseband domain. The combination of these two technologies has revealed a novel functionality that breaks through the conventional MIMO paradigm, allowing MIMO transmission over the air with the use of antenna arrays that may consist of only a single active element, that is surrounded by a number of passive neighboring antennas. The contributions in the book show the capability of such systems to also perform MIMO transmission. This fact holds the potential of revolutionizing the way small-form wireless terminals operate and seems to set the scene for a win-win situation, achieving MIMO transmission with very small and cheap antenna arrays. The book is structured to provide a well-rounded treatment of the various facets of this newly discovered wireless communication capability. All relevant technical angles, ranging from information theoretic to electromagnetic considerations; from analogue circuit to digital baseband control for signal generation; and from channel modeling to communication theoretic aspects are taken into account. A good balance between theory, practical considerations and over-the-air experimentation is proposed and reflected in the chapter outline. Finally, a discussion and early evidence related to potential applications as well as the relevance to current and upcoming wireless standards is provided.
The book systematically introduces the visible light communication (VLC) technology in detail. Basic concepts and how to realize the system are both illustrated, including the transmitter, channel, and the receiver. In addition, a good many experimental results are presented to help readers further understand the VLC technologies. The upper-layer protocols of visible light communication system and the technology trends are also discussed. This book can be a good reference work for researchers, engineers, and graduate students in the fields of communications, LED, and optics.
This book highlights the innovative applications of electromagnetics, optics, thermodynamics theories in creating methods for physical-layer collision prevention- "physical anti-collision" in radio frequency identification (RFID) systems. Using engineering mathematical methods as the core of detection and control algorithm design, it proposes semi-physical verification and detection techniques to the dynamic performance testing in RFID systems. The book also introduces the methods to build semi-physical hardware platforms using photoelectric sensing technology. The book provides valuable ideas to the applications of Internet of Things (IOT) systems in smart logistics, car networking, food traceability, anti-counterfeiting and other livelihood fields. It is worth reading for all researchers in IOT and optoelectronic engineering related industries.
A comprehensive device model considering both spatial distributions of the terahertz field and the field-effect self-mixing factor has been constructed for the first time in the thesis. The author has found that it is the strongly localized terahertz field induced in a small fraction of the gated electron channel that plays an important role in the high responsivity. An AlGaN/GaN-based high-electron-mobility transistor with a 2-micron-sized gate and integrated dipole antennas has been developed and can offer a noise-equivalent power as low as 40 pW/Hz1/2 at 900 GHz. By further reducing the gate length down to 0.2 micron, a noise-equivalent power of 6 pW/Hz1/2 has been achieved. This thesis provides detailed experimental techniques and device simulation for revealing the self-mixing mechanism including a scanning probe technique for evaluating the effectiveness of terahertz antennas. As such, the thesis could be served as a valuable introduction towards further development of high-sensitivity field-effect terahertz detectors for practical applications.
This book provides a detailed review of millimeter-wave power amplifiers, discussing design issues and performance limitations commonly encountered in light of the latest research. Power amplifiers, which are able to provide high levels of output power and linearity while being easily integrated with surrounding circuitry, are a crucial component in wireless microwave systems. The book is divided into three parts, the first of which introduces readers to mm-wave wireless systems and power amplifiers. In turn, the second focuses on design principles and EDA concepts, while the third discusses future trends in power amplifier research. The book provides essential information on mm-wave power amplifier theory, as well as the implementation options and technologies involved in their effective design, equipping researchers, circuit designers and practicing engineers to design, model, analyze, test and implement high-performance, spectrally clean and energy-efficient mm-wave systems.
This book discusses low power techniques for millimeter wave transmitter IC. Considerations for the front-end design are followed by several implementation examples in the 60GHz band in CMOS down to 28nm technology. Additionally, the design and implementation details of digitally-modulated millimeter wave polar transmitters are presented.
This book investigates the design of devices, systems, and circuits for medical applications using the two recently established frequency bands: ultra-wideband (3.1-10.6 GHz) and 60 GHz ISM band. These two bands provide the largest bandwidths available for communication technologies and present many attractive opportunities for medical applications. The applications of these bands in healthcare are wireless body area network (WBAN), medical imaging, biomedical sensing, wearable and implantable devices, fast medical device connectivity, video data transmission, and vital signs monitoring. The recent technological advances and developments proposed or used in medicine based on these two bands are covered. The book introduces possible solutions and design techniques to efficiently implement these systems in medical environment. All individual chapters are written by leading experts in their fields. Contributions by authors are on various applications of ultra-wideband and the 60 GHz ISM band including circuit implementation, UWB and 60 GHz signal transmission around and in- body, antenna design solution, hardware implementation of body sensors, UWB transceiver design, 60 GHz transceiver design, UWB radar for contactless respiratory monitoring, and ultra-wideband based medical Imaging. The book will be a key resource for medical professionals, bio-medical engineers, and graduate and senior undergraduate students in computer, electrical, electronic and biomedical engineering disciplines.
This book presents original findings on tunable microwave metamaterial structures, and describes the theoretical and practical issues involved in the design of metamaterial devices. Special emphasis is given to tunable elements and their advantages in terms of feeding network simplification. Different biasing schemes and feeding network topologies are presented, together with extensive prototype measurements and simulations. The book describes a novel, unique solution for beam steering and beam forming applications, and thus paves the way for the diffusion of new agile communication system components. At the same time, it provides readers with an outstanding and timely review of wave propagation in periodic structures, tunability of metamaterials and the technological constraints that need to be considered in the design of reconfigurable microwave components.
This book gives you the tools you need to understand and determine changing propagation characteristics found in different physical situations and locations. The book presents a practical digital propagation model based entirely on the physical principles of wave propagation. |
You may like...
Practical Approach to Substrate…
Augustine Onyenwe Nwajana, Kenneth Siok Kiam Yeo
Hardcover
R5,609
Discovery Miles 56 090
Antenna Architectures for Future…
Shiban Kishen Koul, Karthikeya G S
Hardcover
R3,625
Discovery Miles 36 250
|