![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Microwave technology
This work presents the Clifford-Cauchy-Dirac (CCD) technique for solving problems involving the scattering of electromagnetic radiation from materials of all kinds. It allows anyone who is interested to master techniques that lead to simpler and more efficient solutions to problems of electromagnetic scattering than are currently in use. The technique is formulated in terms of the Cauchy kernel, single integrals, Clifford algebra and a whole-field approach. This is in contrast to many conventional techniques that are formulated in terms of Green's functions, double integrals, vector calculus and the combined field integral equation (CFIE). Whereas these conventional techniques lead to an implementation using the method of moments (MoM), the CCD technique is implemented as alternating projections onto convex sets in a Banach space. The ultimate outcome is an integral formulation that lends itself to a more direct and efficient solution than conventionally is the case, and applies without exception to all types of materials. On any particular machine, it results in either a faster solution for a given problem or the ability to solve problems of greater complexity. The Clifford-Cauchy-Dirac technique offers very real and significant advantages in uniformity, complexity, speed, storage, stability, consistency and accuracy.
Details improved approaches to the design of power oscillators that employ more analysis and theory and less empirical work than conventional design procedures. It bridges fundamental device physics and the development and implementation of practical microwave and millimeterwave power oscillators.
This book covers the basic principles for understanding radio wave propagation for common frequency bands used in radio-communications. This includes achievements and developments in propagation models for wireless communication. This book is intended to bridge the gap between the theoretical calculations and approaches to the applied procedures needed for radio links design in a proper manner. The authors emphasize propagation engineering by giving fundamental information and explain the use of basic principles together with technical achievements. This new edition includes additional information on radio wave propagation in guided media and technical issues for fiber optics cable networks with several examples and problems. This book also includes a solution manual - with 90 solved examples distributed throughout the chapters - and 158 problems including practical values and assumptions.
This book presents an investigative approach to globalization-driving technologies that efficiently deliver ubiquitous, last-mile, broadband internet access to emerging markets and rural areas. Research has shown that ubiquitous internet access boosts socio-economic growth through innovations in science and technology, and has a positive effect on the lives of individuals. Last-mile internet access in developing countries is not only intended to provide areas with stable, efficient, and cost-effective broadband capabilities, but also to encourage the use of connectivity for human capacity development. The book offers an overview of the principles of various technologies, such as light fidelity and millimeter-wave backhaul, as last-mile internet solutions and describes these potential solutions from a signal propagation perspective. It also provides readers with the notional context needed to understand their operation, benefits, and limitations, and enables them to investigate feasible and tailored solutions to ensure sustainable infrastructures that are expandable and maintainable.
This text sets out to provide a source of design techniques for leading to reduction in expense, size and weight of directional couplers and filters. It also gives step-by-step procedures for enhancing circuit performance. Numerous design examples and verified measured results for ultrawideband, bandpass, periodic and co-directional couplers are provided.
Presents state-of-the-art information on the various types of semiconductor phase shifters, and explains why different types hold tremendous potential for future phased arrays.
Based on a detailed analysis of the signal model of the moving target, this thesis focuses on the theories and applications of ground moving target indicator (GMTI) and ground moving target imaging (GMTIm) algorithms in synthetic aperture radar/ ground moving target indicator (SAR/GMTI mode), wide-area surveillance ground moving target indication (WAS-GMTI) mode and frequency modulated continuous wave synthetic aperture radar (FMCW SAR) systems. The proposed algorithms can not only indicate and image fast-moving targets, but are also effective in the context of slow-moving target processing. The system design scheme combines the mechanical scanning mode and the airborne SAR system, while the azimuth moving target indication algorithm employs the additional range walk migration induced by FMCW SAR systems. In addition, the non-ideal errors that deteriorate the performance of GMTIm algorithms in real SAR data processing are discussed, and suitable compensation methods are provided.>
This book gives you the tools you need to understand and determine changing propagation characteristics found in different physical situations and locations. The book presents a practical digital propagation model based entirely on the physical principles of wave propagation.
Volume I: A low-dimensional magnet is key to the next-generation of electronic devices. In some aspects, low dimensional magnets refer to nanostructured magnets or single-molecule magnets. They are widely used in biomedicine, technology, industries, and environmental remediation. Emerging Applications of Low Dimensional Magnets covers current state-of-the-art progress in ferromagnetic materials, experimental studies of nanomaterials-based spintronics, and directions for future approaches, applications, and devices. Experts from a variety of areas such as biomedical engineering, materials science, nanotechnology, and electronic engineering have contributed to this handbook making it the most up-to-date and interdisciplinary reference of its kind in the field of low dimensional magnets. Volume II: Low-dimensional magnetic materials find their wide applications in many areas, including spintronics, memory devices, catalysis, biomedical, sensors, electromagnetic shielding, aerospace, and energy. This book provides a comprehensive discussion on magnetic nanomaterials for emerging applications. Fundamentals along with applications of low-dimensional magnetic materials in spintronics, catalysis, memory, biomedicals, toxic waste removal, aerospace, telecommunications, batteries, supercapacitors, flexible electronics, and many more are covered in detail to provide a full spectrum of their advanced applications. This book offers fresh aspects of nanomagnetic materials and innovative directions to scientists, researchers, and students. It will be of particular interest to materials scientists, engineers, physicists, chemists, and researchers in electronic and spintronic industries, and is suitable as a textbook for undergraduate and graduate studies.
Microwave photonics and information optics provide high bandwidth and precision along with ultrafast speed at a low cost. In order to reduce noise at the communication trans-receivers, scattering in the devices needs to be decreased, which can be achieved by replacing optoelectronic devices with photonic devices because in the latter only photons propagate electromagnetic waves. Contemporary Developments in High-Frequency Photonic Devices is a crucial research book that examines high-frequency photonics and their applications in communication engineering. Featuring coverage on a wide range of topics such as metamaterials, optoelectronic devices, and plasmonics, this book is excellent for students, researchers, engineers, and professionals.
A comprehensive device model considering both spatial distributions of the terahertz field and the field-effect self-mixing factor has been constructed for the first time in the thesis. The author has found that it is the strongly localized terahertz field induced in a small fraction of the gated electron channel that plays an important role in the high responsivity. An AlGaN/GaN-based high-electron-mobility transistor with a 2-micron-sized gate and integrated dipole antennas has been developed and can offer a noise-equivalent power as low as 40 pW/Hz1/2 at 900 GHz. By further reducing the gate length down to 0.2 micron, a noise-equivalent power of 6 pW/Hz1/2 has been achieved. This thesis provides detailed experimental techniques and device simulation for revealing the self-mixing mechanism including a scanning probe technique for evaluating the effectiveness of terahertz antennas. As such, the thesis could be served as a valuable introduction towards further development of high-sensitivity field-effect terahertz detectors for practical applications.
This book investigates the design of devices, systems, and circuits for medical applications using the two recently established frequency bands: ultra-wideband (3.1-10.6 GHz) and 60 GHz ISM band. These two bands provide the largest bandwidths available for communication technologies and present many attractive opportunities for medical applications. The applications of these bands in healthcare are wireless body area network (WBAN), medical imaging, biomedical sensing, wearable and implantable devices, fast medical device connectivity, video data transmission, and vital signs monitoring. The recent technological advances and developments proposed or used in medicine based on these two bands are covered. The book introduces possible solutions and design techniques to efficiently implement these systems in medical environment. All individual chapters are written by leading experts in their fields. Contributions by authors are on various applications of ultra-wideband and the 60 GHz ISM band including circuit implementation, UWB and 60 GHz signal transmission around and in- body, antenna design solution, hardware implementation of body sensors, UWB transceiver design, 60 GHz transceiver design, UWB radar for contactless respiratory monitoring, and ultra-wideband based medical Imaging. The book will be a key resource for medical professionals, bio-medical engineers, and graduate and senior undergraduate students in computer, electrical, electronic and biomedical engineering disciplines.
Electroacoustic transducers (EAT) are devices, which transform electric energy to energy of acoustic fluctuations. Principles of action, design of transducers for work in air and water as well as for non-destructive control are described in the book. New technologies of designing EAT, not only expanding designing possibilities, are described. They also allow to create transducers with improved characteristics. In particular, methods to increase target capacity (sound pressure), decrease working (resonant) frequency of transducers and expand frequencies of projectors and sound receivers are developed. Methods and control units of transducers in batch production of transducers are described, too.
This highly practical and self-contained guidebook explains the principles and major applications of digital hologram recording and numerical reconstruction (Digital Holography). A special chapter is designated to digital holographic interferometry with applications in deformation and shape measurement and refractive index determination. Applications in imaging and microscopy are also described. Spcial techniques such as digital light-in-flight holography, holographic endoscopy, information encrypting, comparative holography, and related techniques of speckle metrology are also treated
This book unites two different technologies: parasitic antenna arrays driven via analogue circuits that control the electromagnetic waves generated by the antenna array; and MIMO technology for multi-antenna arrays, typically driven by digital techniques in the baseband domain. The combination of these two technologies has revealed a novel functionality that breaks through the conventional MIMO paradigm, allowing MIMO transmission over the air with the use of antenna arrays that may consist of only a single active element, that is surrounded by a number of passive neighboring antennas. The contributions in the book show the capability of such systems to also perform MIMO transmission. This fact holds the potential of revolutionizing the way small-form wireless terminals operate and seems to set the scene for a win-win situation, achieving MIMO transmission with very small and cheap antenna arrays. The book is structured to provide a well-rounded treatment of the various facets of this newly discovered wireless communication capability. All relevant technical angles, ranging from information theoretic to electromagnetic considerations; from analogue circuit to digital baseband control for signal generation; and from channel modeling to communication theoretic aspects are taken into account. A good balance between theory, practical considerations and over-the-air experimentation is proposed and reflected in the chapter outline. Finally, a discussion and early evidence related to potential applications as well as the relevance to current and upcoming wireless standards is provided.
The book systematically introduces the visible light communication (VLC) technology in detail. Basic concepts and how to realize the system are both illustrated, including the transmitter, channel, and the receiver. In addition, a good many experimental results are presented to help readers further understand the VLC technologies. The upper-layer protocols of visible light communication system and the technology trends are also discussed. This book can be a good reference work for researchers, engineers, and graduate students in the fields of communications, LED, and optics.
This revised edition of the author's classic 2006 text offers a comprehensively updated review of the field of relativistic nonlinear electrodynamics. It explores the interaction of strong and super-strong electromagnetic/laser radiation with the electromagnetic quantum vacuum and diverse types of matter - including free charged particles and antiparticles, acceleration beams, plasma and plasmous media. The appearance of laser sources of relativistic and ultra-relativistic intensities over the last decade has stimulated investigation of a large class of processes under such super-strong radiation fields. Revisions for this second edition reflect these developments and the book includes new chapters on Bremsstrahlung and nonlinear absorption of superintense radiation in plasmas, the nonlinear interaction of relativistic atoms with intense laser radiation, nonlinear interaction of strong laser radiation with Graphene, and relativistic nonlinear phenomena in solid-plasma targets under supershort laser pulses of ultrarelativistic intensities. The only book devoted to the subject of relativistic nonlinear electrodynamics, this second edition will be a valuable resource for graduate students and researchers involved in any aspect of the field, including those working with intense x-ray - gamma-ray lasers, the new generation of small size laser-plasma accelerators of superhigh energies and high-brightness particle beams.
This book is intended for systems engineers, hybrid and monolithic power amplifier designers, engineers involved in the development of CAD programs, academics, and industrial and goverment researchers. The book is devoted exclusively to high power GaAs FET amplifier design, covering the subject comprehensively, including FET design, circuit design, thermal and reliability analysis, and systems applications.
This book presents original findings on tunable microwave metamaterial structures, and describes the theoretical and practical issues involved in the design of metamaterial devices. Special emphasis is given to tunable elements and their advantages in terms of feeding network simplification. Different biasing schemes and feeding network topologies are presented, together with extensive prototype measurements and simulations. The book describes a novel, unique solution for beam steering and beam forming applications, and thus paves the way for the diffusion of new agile communication system components. At the same time, it provides readers with an outstanding and timely review of wave propagation in periodic structures, tunability of metamaterials and the technological constraints that need to be considered in the design of reconfigurable microwave components.
This practical book for microwave and RF engineers presents time-saving circuit design "recipes", without theory. The book reveals practical, test methods for designing and implementing a wide range of nonlinear RF and microwave circuits, including all types of mixers, frequency multipliers, and more. A special feature is a complete treatment of FET resistive mixers, which offer the lowest intermodulation distortion of all types of mixers.
This is a guide to the design and application of elliptical dielectric waveguides and fibers. Written by one of the pioneers of optical fiber technology, it shows the theoretical basis of the technology, demonstrates the practical uses for elliptical fibers, guides the reader through design criteria and trade-offs, and gives immediate access to collected data and references on the topic. "Elliptical Fiber Waveguides" begins with an historical overview, and then provides detailed coverage of specific waveguide and fiber modes, including all relevant specifications and data currently available. The book examines the use of elliptical fibers for a wide variety of recent applications, including sensors, rare-earth-doped fiber sources, and amplifiers. With its 278 equations, 161 figures, and nearly 200 references to the literature, "Elliptical Fiber Waveguides" brings together in one source the complete body of information currently available on this promising technology.
This book discusses low power techniques for millimeter wave transmitter IC. Considerations for the front-end design are followed by several implementation examples in the 60GHz band in CMOS down to 28nm technology. Additionally, the design and implementation details of digitally-modulated millimeter wave polar transmitters are presented.
This book presents advances in the field of optical networks - specifically on research and applications in elastic optical networks (EON). The material reflects the authors' extensive research and industrial activities and includes contributions from preeminent researchers and practitioners in optical networking. The authors discuss the new research and applications that address the issue of increased bandwidth demand due to disruptive, high bandwidth applications, e.g., video and cloud applications. The book also discusses issues with traffic not only increasing but becoming much more dynamic, both in time and direction, and posits immediate, medium, and long-term solutions throughout the text. The book is intended to provide a reference for network architecture and planning, communication systems, and control and management approaches that are expected to steer the evolution of EONs.
This book is devoted to theoretical methods used in the extreme circumstances of very strong electromagnetic fields. The development of high power lasers, ultrafast processes, manipulation of electromagnetic fields and the use of very fast charged particles interacting with other charges requires an adequate theoretical description. Because of the very strong electromagnetic field, traditional theoretical approaches, which have primarily a perturbative character, have to be replaced by descriptions going beyond them. In the book an extension of the semi-classical radiation theory and classical dynamics for particles is performed to analyze single charged atoms and dipoles submitted to electromagnetic pulses. Special attention is given to the important problem of field reaction and controlling dynamics of charges by an electromagnetic field.
This is an open access book. This course-tested text is an ideal starting point for engineers and physicists entering the field of particle accelerators. The fundamentals are comprehensively introduced, derivations of essential results are provided and a consistent notation style used throughout the book allows readers to quickly familiarize themselves with the field, providing a solid theoretical basis for further studies. Emphasis is placed on the essential features of the longitudinal motion of charged particle beams, together with the corresponding RF generation and power amplification devices for synchrotron and storage ring systems. In particular, electrical engineering aspects such as closed-loop control of system components are discussed. The book also offers a valuable resource for graduate students in physics, electronics engineering, or mathematics looking for an introductory and self-contained text on accelerator physics. |
You may like...
Surrogate Modeling For High-frequency…
Slawomir Koziel, Anna Pietrenko-Dabrowska
Hardcover
R3,774
Discovery Miles 37 740
RF / Microwave Circuit Design for…
Ulrich L. Rohde, Matthias Rudolph
Hardcover
R4,952
Discovery Miles 49 520
Handbook of Research on Emerging Designs…
Jamal Zbitou, Mostafa Hefnawi, …
Hardcover
R8,027
Discovery Miles 80 270
Spatial Polarization Characteristics of…
Huanyao Dai, Xuesong Wang, …
Hardcover
R4,638
Discovery Miles 46 380
Principles and Applications of…
Changzhi Li, Mohammad Tofighi, …
Hardcover
Microwave Wireless Communications - From…
Antonio Raffo, Giovanni Crupi
Hardcover
R2,693
Discovery Miles 26 930
|