Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Microwave technology
Wireless communication has emerged as an independent discipline in the past decades. Everything from cellular voice telephony to wireless data transmission using wireless sensor networks has profoundly impacted the safety, production, and productivity of industries and our lifestyle as well. After a decade of exponential growth, the wireless industry is one of the largest industries in the world. Therefore, it would be an injustice if the wireless communication is not explored for mining industry. Underground mines, which are characterized by their tough working conditions and hazardous environments, require fool-proof mine-wide communication systems for smooth functioning of mine workings and ensuring better safety. Proper and re- able communication systems not only save the machine breakdown time but also help in immediate passing of messages from the vicinity of underground working area to the surface for day-to-day normal mining operations as well as for speedy rescue operations in case of disaster. Therefore, a reliable and effective commu- cation system is an essential requisite for safe working, and maintaining requisite production and productivity of underground mines. Most of the existing systems generally available in underground mines are based on line (wired) communication principle, hence these are unable to withstand in the disaster conditions and dif?cult to deploy in inaccessible places. Therefore, wireless communication is an indispe- able, reliable, and convenient system and essential in case of day-to-day normal duty or disaster situations.
This book provides an in-depth treatment of both linear fiber-optic systems and their key enabling devices. It presents a concise but rigorous treatment of the theory and practice of analog (linear) fiber-optics links and systems that constitute the foundation of Hybrid Fiber Coax infrastructure in present-day CATV distribution and cable modem Internet access. Emerging applications in remote fiber-optic feed for free-space millimeter wave enterprise campus networks are also described. Issues such as dispersion and interferometric noise are treated quantitatively, and means for mitigating them are explained. This broad but concise text will thus be invaluable not only to students of fiber-optics communication but also to practicing engineers. To the second edition of this book important new aspects of linear fiber-optic transmission technologies are added, such as high level system architectural issues, algorithms for deriving the optimal frequency assignment, directly modulated or externally modulated laser transmitters and the use of Erbium-doped fiber amplifier (EDFA) in linear fiber optic systems. Significant examples of field deployed military systems enabled by linear fiber optic links are described in an appendix.
Advances in electronics have pushed mankind to create devices, ranging from - credible gadgets to medical equipment to spacecraft instruments. More than that, modern society is getting used to-if not dependent on-the comfort, solutions, and astonishing amount of information brought by these devices. One ?eld that has continuously bene?tted from those advances is the radio frequency integrated c- cuit (RFIC) design, which in its turn has promoted countless bene?ts to the mankind as a payback. Wireless communications is one prominent example of what the - vances in electronics have enabled and their consequences to our daily life. How could anyone back in the eighties think of the possibilities opened by the wireless local area networks (WLANs) that can be found today in a host of places, such as public libraries, coffee shops, trains, to name just a few? How can a youngster, who lives this true WLAN experience nowadays, imagine a world without it? This book dealswith the design oflinearCMOS RF PowerAmpli?ers(PAs). The RF PA is a very important part of the RF transceiver, the device that enables wireless communications. Two important aspects that are key to keep the advances in RF PA design at an accelerate pace are treated: ef?ciency enhancement and frequen- tunable capability. For this purpose, the design of two different integrated circuits realizedina0. 11umtechnologyispresented, eachoneaddressingadifferentaspect. With respect to ef?ciency enhancement, the design of a dynamic supply RF power ampli?er is treated, making up the material of Chaps. 2 to 4."
This work provides a comprehensive discussion of the bias dependence of equivalent circuit parameters for the three devices and an extensive discussion of temperature dependence. It: covers recess-etched MESFETs and self-aligned MESFETs with and without lightly-doped-drains and JFETs; analyzes GaAs-based pHEMTS and InP lattice-matched HEMT equivalent circuits; and describes a large-signal, temperature-dependent model extractor for A1GaAs-GaAs HBTs. The book is intended for circuit designers, process and device developers and test engineers.
This book consists of contributions given in honor of Wolfgang J.R. Hoefer. Space and time discretizing time domain methods for electromagnetic full-wave simulation have emerged as key numerical methods in computational electromagnetics. Time domain methods are versatile and can be applied to the solution of a wide range of electromagnetic field problems. Computing the response of an electromagnetic structure to an impulsive excitation localized in space and time provides a comprehensive characterization of the electromagnetic properties of the structure in a wide frequency range. The most important methods are the Finite Difference Time Domain (FDTD) and the Transmission Line Matrix (TLM) methods. The contributions represent the state of the art in dealing with time domain methods in modern engineering electrodynamics for electromagnetic modeling in general, the Transmission Line Matrix (TLM) method, the application of network concepts to electromagnetic field modeling, circuit and system applications and, finally, with broadband devices, systems and measurement techniques.
Based on the author's real-world design experience in this key emerging area, this comprehensive guide examines and compares all major RF power amplifier linearization techniques in detail. Featuring practical tips, more than 250 illustrations, and over 600 verified equations, the book seeks to save the reader valuable design time whilst helping them avoid costly design errors. It covers the modelling and measurement of amplifier non-linearity, and describes the main methods for overcoming non-linearity in a wide range of applications, including: base stations using feedforward and predistortion; mobile communications systems and handsets using RF or digital predistortion, cartesian loop, LINC and envelope elimination and restoration (EECR); and satellite systems.
Next generation optical communication systems will have to transport a significantly increased data volume at a reduced cost per transmitted bit. To achieve these ambitious goals optimum design is crucial in combination with dynamic adaptation to actual traffic demands and improved energy efficiency. In the first part of the book the author elaborates on the design of optical transmission systems. Several methods for efficient numerical simulation are presented ranging from meta-model based optimization to parallelization techniques for solving the nonlinear Schroedinger equation. Furthermore, fast analytical and semi-analytical models are described to estimate the various degradation effects occurring on the transmission line. In the second part of the book operational aspects of optical networks are investigated. Physical layer impairment-aware routing and regenerator placement are studied. Finally, it is analyzed how the energy efficiency of a multi-layer optical core network can be increased by dynamic adaptation to traffic patterns changing in the course of the day.
This book constitutes the Final Report of COST Action 279, Analysis and DesignofAdvancedMultiserviceNetworkssupportingMultimedia, Mobility, andInterworking, a guided tour of the state-of-the-art work on diverse aspects of modern telecommunications networks design developed within this Action during the four years of its operation, started on July 1, 2001, and ended on June 30, 2005. As stated in its founding charter, its Memorandum of Understanding, the work area of COST 279 is the analysis, design, and control aspects of prese- day networks-quite a wide scope. Behind the unifying fac, ade put on by the Internet Protocol (IP) network layer, todays networks hide a mess of hete- geneity: heterogeneity at the level of applications, both concerning the traf?c they produce and the network Quality of Service (QoS) they require, and h- erogeneity at the level of network component subsystems, in particular an - creasingly important mobile/wireless access segment. A common ground for the treatment of this disparate set of topics was given by the strong meth- ological component contained in the approach followed in COST 279, with importance placed on the development and application, whenever possible, of analytical techniques and models for the mathematical understanding of the systems under study. The results expected from the Action ranged thus from mathematical models and algorithms as entities of own interest to the und- standing of systembehavior via their application."
The modern wireless communication industry has put great demands on circuit designers for smaller, cheaper transceivers in the gigahertz frequency range. One tool which has assisted designers in satisfying these requirements is the use of on-chip inductiveelements (inductors and transformers) in silicon (Si) radio-frequency (RF) integrated circuits (ICs). These elements allow greatly improved levels of performance in Si monolithic low-noise amplifiers, power amplifiers, up-conversion and down-conversion mixers and local oscillators. Inductors can be used to improve the intermodulation distortion performance and noise figure of small-signal amplifiers and mixers. In addition, the gain of amplifier stages can be enhanced and the realization of low-cost on-chip local oscillators with good phase noise characteristics is made feasible. In order to reap these benefits, it is essential that the IC designer be able to predict and optimize the characteristics of on-chip inductiveelements. Accurate knowledge of inductance values, quality factor (Q) and the influence of ad- cent elements (on-chip proximity effects) and substrate losses is essential. In this book the analysis, modeling and application of on-chip inductive elements is considered. Using analyses based on Maxwells equations, an accurate and efficient technique is developed to model these elements over a wide frequency range. Energy loss to the conductive substrate is modeled through several mechanisms, including electrically induced displacement and conductive c- rents and by magnetically induced eddy currents. These techniques have been compiled in a user-friendly software tool ASITIC (Analysis and Simulation of Inductors and Transformers for Integrated Circuits).
This book presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. It covers picosecond, femtosecond, and attosecond processes relevant to applications in physics, chemistry, biology, and engineering. Ultrafast technology has a profound impact in a wide range of applications, amongst them biomedical imaging, chemical dynamics, frequency standards, material processing, and ultrahigh-speed communications. This book summarizes the results presented at the 19th International Conference on Ultrafast Phenomena and provides an up-to-date view of this important and rapidly advancing field.
Including a systematic introduction to the fundamental principles of microwave radar, this text presents an extensive discussion of radar imaging. It also features information on image superresolution, automatic target recognition, moving target indication, and space-time adaptive processing (STAP).
This book deals with all aspects of industrial, scientififc and medical (ISM) applications of microwaves. The text covers not only the theoretical and applied aspects of electromagnetism, but also explores current research, industrial considerations and historical and regulatory issues. The book is completed by a listing of most of the laboratories in the world involved with microwave heating. The reader will find 176 addresses, including complete names, phone, fax and telex numbers, as well as 4000 references.
This book consists of the identification, characterization, and modeling of electromagnetic interferences in substations for the deployment of wireless sensor networks. The authors present in chapter 3 the measurement setup to record sequences of impulsive noise samples in the ISM band of interest. The setup can measure substation impulsive noise, in wide band, with enough samples per time window and enough precision to allow a statistical study of the noise. During the measurement campaign, the authors recorded around 120 noise sequences in different substations and for four ranges of equipment voltage, which are 25 kV, 230 kV, 315 kV and 735 kV. A characterization process is proposed, by which physical characteristics of partial discharge can be measured in terms of first- and second-order statistics. From the measurement campaign, the authors infer the characteristics of substation impulsive noise as a function of the substation equipment voltage, and can provide representative parameters for the four voltage ranges and for several existing impulsive noise models. The authors investigate in chapters 4 and 5 the modeling of electromagnetic interferences caused by partial discharge sources. First, the authors propose a complete and coherent approach model that links physical characteristics of high-voltage installations to the induced radio-interference spectra of partial discharge sources. The goodness-of-fit of the proposed physical model has been measured based on some interesting statistical metrics. This allows one to assess the effectiveness of the authors' approach in terms of first- and second-order statistics. Chapter 6 proposes a model based on statistical approach. Indeed, substation impulsive noise is composed of correlated impulses, which would require models with memory in order to replicate a similar correlation. Among different models, we have configured a Partitioned Markov Chain (PMC) with 19 states (one state for the background noise and 18 states for the impulse); this Markov-Gaussian model is able to generate impulsive noise with correlated impulse samples. The correlation is observable on the impulse duration and the power spectrum of the impulses. Our PMC model provides characteristics that are more similar to the characteristics of substation impulsive noise in comparison with other models, in terms of time and frequency response, as well as Probability Density Functions (PDF). Although PMC represents reliably substation impulsive noise, the model remains complex in terms of parameter estimation due to a large number of Markov states, which can be an obstacle for future wireless system design. In order to simplify the model, the authors decrease the number of states to 7 by assigning one state to the background noise and 6 states to the impulse and we call this model PMC-6. PMC-6 can generate realistic impulses and can be easily implemented in a receiver in order to mitigate substation impulsive noise. Representative parameters are provided in order to replicate substation impulsive noise for different voltage ranges (25-735 kV). Chapter 7, a generalized radio-noise model for substations is proposed, in which there are many discharges sources that are randomly distributed over space and time according to the Poisson field of interferers approach. This allows for the identification of some interesting statistical properties of moments, cumulants and probability distributions. These can, in turn, be utilized in signal processing algorithms for rapid partial discharge's identification, localization, and impulsive noise mitigation techniques in wireless communications in substations. The primary audience for this book is the electrical and power engineering industry, electricity providers and companies who are interested in substation automation systems using wireless communication technologies for smart grid applications. Researchers, engineers and students studying and working in wireless communication will also want to buy this book as a reference.
This book deals with the Effective Electron Mass (EEM) in low dimensional semiconductors. The materials considered are quantum confined non-linear optical, III-V, II-VI, GaP, Ge, PtSb2, zero-gap, stressed, Bismuth, carbon nanotubes, GaSb, IV-VI, Te, II-V, Bi2Te3, Sb, III-V, II-VI, IV-VI semiconductors and quantized III-V, II-VI, IV-VI and HgTe/CdTe superlattices with graded interfaces and effective mass superlattices. The presence of intense electric field and the light waves change the band structure of optoelectronic semiconductors in fundamental ways, which have also been incorporated in the study of the EEM in quantized structures of optoelectronic compounds that control the studies of the quantum effect devices under strong fields. The importance of measurement of band gap in optoelectronic materials under strong electric field and external photo excitation has also been discussed in this context. The influence of crossed electric and quantizing magnetic fields on the EEM and the EEM in heavily doped semiconductors and their nanostructures is discussed. This book contains 200 open research problems which form the integral part of the text and are useful for both Ph. D aspirants and researchers in the fields of solid-state sciences, materials science, nanoscience and technology and allied fields in addition to the graduate courses in modern semiconductor nanostructures. The book is written for post graduate students, researchers and engineers, professionals in the fields of solid state sciences, materials science, nanoscience and technology, nanostructured materials and condensed matter physics.
"Geolocation of RF Signals-Principles and Simulations" offers an overview of the best practices and innovative techniques in the art and science of geolocation over the last twenty years. It covers all research and development aspects including theoretical analysis, RF signals, geolocation techniques, key block diagrams, and practical principle simulation examples in the frequency band from 100 MHz to 18 GHz or even 60 GHz. Starting with RF signals, the book progressively examines various signal bands - such as VLF, LF, MF, HF, VHF, UHF, L, S, C, X, Ku, and, K and the corresponding geolocation requirements per band and per application - to achieve required performance objectives of up to 0 precision. Part II follows a step-by-step approach of RF geolocation techniques and concludes with notes on state-of-the-art geolocation designs as well as advanced features found in signal generator instruments. Drawing upon years of practical experience and using numerous examples and illustrative applications, Ilir Progri provides a comprehensive introduction to "Geolocation of RF Signals," and includes hands-on real world labs and applications using MATLAB in the areas of: RF signals specifications, RF geolocation distributed wireless communications networks and RF geolocation. "Geolocation of RF Signals-Principles and Simulations" will be of interest to government agency program managers industry professionals and engineers, academic researchers, faculty and graduate students who are interested in or currently designing, developing and deploying innovative geolocation of RF Signal systems."
Provides coverage of the most efficient and effective methods of network analysis optimization and synthesis. A step-by-step guide to every aspect of the RF and microwave circuit design process - starting with a set of specifications and ending with hardware that performs as modeled the first time.
This book presents an innovative concept for the realization of sensors based on a planar metamaterial microwave array and shows their application in biomedical analysis and treatment. The sensors are able to transduce the dielectric properties of materials in their direct vicinity into an electric signal. The specific array organization permits a simultaneous analysis of several materials using a single readout signal or a relative characterization of one material where information about its spatial distribution can be extracted. Two applications of the designed sensors are described here: the first is a cytological screening using micro fluidic technology, which shows that the sensors may be integrated into lab-on-chip technologies; the second application regards the use of the sensor in both the analysis and treatment of organic tissues. The developed sensor is able not only to screen the tissues for abnormalities, but also, by changing the applied signals, to perform thermal ablation and treat the abnormalities in a highly focused way. Thus, the research described in this book represents a considerable advancement in the field of biomedical microwave sensing.
Ignited by the mobile phone's huge success at the end of last century, the demand for wireless services is constantly growing. To face this demand, wireless systems have been and are deployed at a large scale. These include mobility-oriented technologies such as GPRS, CDMA or UMTS, and Local Area Network-oriented technologies such as WiFi. WiMAX Networks covers aspects of WiMAX quality of service (QoS), security, mobility, radio resource management, multiple input multiple output antenna, planning, cost/revenue optimization, physical layer, medium access control (MAC) layer, network layer, and so on.
To handle many standards and ever increasing bandwidth requirements, large number of filters and switches are used in transceivers of modern wireless communications systems. It makes the cost, performance, form factor, and power consumption of these systems, including cellular phones, critical issues. At present, the fixed frequency filter banks based on Film Bulk Acoustic Resonators (FBAR) are regarded as one of the most promising technologies to address performance -form factor-cost issues. Even though the FBARs improve the overall performances the complexity of these systems remains high. Attempts are being made to exclude some of the filters by bringing the digital signal processing (including channel selection) as close to the antennas as possible. However handling the increased interference levels is unrealistic for low-cost battery operated radios. Replacing fixed frequency filter banks by one tuneable filter is the most desired and widely considered scenario. As an example, development of the software based cognitive radios is largely hindered by the lack of adequate agile components, first of all tuneable filters. In this sense the electrically switchable and tuneable FBARs are the most promising components to address the complex cost-performance issues in agile microwave transceivers, smart wireless sensor networks etc. Tuneable Film Bulk Acoustic Wave Resonators discusses FBAR need, physics, designs, modelling, fabrication and applications. Tuning of the resonant frequency of the FBARs is considered. Switchable and tuneable FBARs based on electric field induced piezoelectric effect in paraelectric phase ferroelectrics are covered. The resonance of these resonators may be electrically switched on and off and tuned without hysteresis. The book is aimed at microwave and sensor specialists in the industry and graduate students. Readers will learn about principles of operation and possibilities of the switchable and tuneable FBARs, and will be given general guidelines for designing, fabrication and applications of these devices.
This book provides a unique review of various aspects of metallic contamination in Si and Ge-based semiconductors. It discusses all of the important metals including their origin during crystal and/or device manufacturing, their fundamental properties, their characterization techniques and their impact on electrical devices' performance. Several control and possible gettering approaches are addressed. The book offers a valuable reference guide for all researchers and engineers studying advanced and state-of-the-art micro- and nano-electronic semiconductor devices and circuits. Adopting an interdisciplinary approach, it combines perspectives from e.g. material science, defect engineering, device processing, defect and device characterization, and device physics and engineering.
This book presents the proceedings of the International Conference on Wireless Intelligent and Distributed Environment for Communication (WIDECOM 2018), organized by SRM University, NCR Campus, New Delhi, India, February 16-18, 2018. The conference focuses on challenges with respect to the dependability of integrated applications and intelligence-driven security threats against the platforms supporting these applications. The WIDECOM 2018 proceedings features papers addressing issues related to the new dependability paradigms, design, control, and management of next generation networks, performance of dependable network computing and mobile systems, protocols that deal with network computing, mobile/ubiquitous systems, cloud systems, and Internet of Things (IoT) systems. The proceeding is a valuable reference for researchers, instructors, students, scientists, engineers, managers, and industry practitioners, in industry, in the aforementioned areas. The book's structure and content is organized in such a manner that makes it useful at a variety of learning levels. Presents the proceedings of the International Conference on Wireless Intelligent and Distributed Environment for Communication (WIDECOM 2018), organized by SRM University, NCR Campus, New Delhi, India, February 16-18, 2018; Includes an array of topics related to new dependability paradigms, design, control, and management of next generation networks, performance of dependable network computing and mobile systems, protocols that deal with network computing, mobile/ubiquitous systems, cloud systems, and Internet of Things (IoT) systems; Addresses issues related to the design and performance of dependable network computing and systems and to the security of these systems.
New, powerful mixed-mode scattering parameter techniques are earning rave reviews among wireless and microwave engineers, because they have proved to be highly effective design tools for optimizing the performance of integrated circuits, components, and systems. Now, for the first time, these techniques are explained in full detail by the inventors themselves. This groundbreaking guide uses the original research and application work in the field to describe mixed-mode S-parameter principles and provide practitioners with expert advice on how to use these tools for their own microwave design projects. The book includes over 150 illustrations that support key topics.
Microwave Physics and Techniques discusses the modelling and application of nonlinear microwave circuits and the problems of microwave electrodynamics and applications of magnetic and high Tc superconductor structures. Aspects of advanced methods for the structural investigation of materials and of MW remote sensing are also considered. The dual focus on both HTSC MW device physics and MW excitation in ferrites and magnetic films will foster the interaction of specialists in these different fields.
Discusses process variation, model accuracy, design flow and many other practical engineering, reliability and manufacturing issues Gives a good overview for a person who is not an expert in modeling and simulation, enabling them to extract the necessary information to competently use modeling and simulation programs Written for engineering students and product design engineers |
You may like...
Antenna Architectures for Future…
Shiban Kishen Koul, Karthikeya G S
Hardcover
R3,625
Discovery Miles 36 250
Flash Lamp Annealing - From Basics to…
Lars Rebohle, Slawomir Prucnal, …
Hardcover
R3,543
Discovery Miles 35 430
Laser Optoelectronic Oscillators
Alexander A. Bortsov, Yuri B. Il'in, …
Hardcover
R4,299
Discovery Miles 42 990
Advances in Communication Systems and…
J. Jayakumari, George K. Karagiannidis, …
Hardcover
R5,628
Discovery Miles 56 280
Handbook of Research on Advanced Trends…
Ahmed El Oualkadi, Jamal Zbitou
Hardcover
R8,280
Discovery Miles 82 800
Surrogate Modeling For High-frequency…
Slawomir Koziel, Anna Pietrenko-Dabrowska
Hardcover
R3,977
Discovery Miles 39 770
Practical Approach to Substrate…
Augustine Onyenwe Nwajana, Kenneth Siok Kiam Yeo
Hardcover
R5,609
Discovery Miles 56 090
|