![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Microwave technology
High-k Materials in Multi-Gate FET Devices focuses on high-k materials for advanced FET devices. It discusses emerging challenges in the engineering and applications and considers issues with associated technologies. It covers the various way of utilizing high-k dielectrics in multi-gate FETs for enhancing their performance at the device as well as circuit level. Provides basic knowledge about FET devices Presents the motivation behind multi-gate FETs, including current and future trends in transistor technologies Discusses fabrication and characterization of high-k materials Contains a comprehensive analysis of the impact of high-k dielectrics utilized in the gate-oxide and the gate-sidewall spacers on the GIDL of emerging multi-gate FET architectures Offers detailed application of high-k materials for advanced FET devices Considers future research directions This book is of value to researchers in materials science, electronics engineering, semiconductor device modeling, IT, and related disciplines studying nanodevices such as FinFET and Tunnel FET and device-circuit codesign issues.
Provides background for design and development of metamaterial structures using novel unit cells. Gives in-depth performance study of miniaturization of microstrip antennas. Discusses design and development of both transmission and reflection types metasurfaces and their practical applications. Verifies a variety of Metamaterial structures and Metasurfaces experimentally
This book summarizes the latest findings by leading researchers in the field of photon science in Russia and Japan. It discusses recent advances in the field of photon science and chemistry, covering a wide range of topics, including photochemistry and spectroscopy of novel materials, magnetic properties of solids, photobiology and imaging, and spectroscopy of solids and nanostructures. Based on lectures by respected scientists at the forefront of photon and molecular sciences, the book helps keep readers abreast of the current developments in the field.
This book is focused on recent advances in the development of thin films for photovoltaic applications, TiO2/WO3 bi-layers for applications with enhanced photo-catalytic properties, nanometer oxide and hydroxide films for anticorrosive coatings, surface passivation in chemical industries, micro- and nanoelectronics, trilayers of metglas and lead free piezoelectrics for magnetic field sensors, current sensors, spintronics, microwave and read/write devices. Diluted ferromagnetic alloy films are also considered for superconducting spintronics based on superconducting spin-valves. Thermal properties of segmented nanowires are analyzed with respect to thermoelectric applications. Recent advances in template production of nanocomposites are also reviewed with particular focus on technologies for template assisted formation of metal nanotubes. Some elements related to abrasive flow machining (AFM), specifically state of the art elements of technological systems and construction of equipment are presented. The book is written for researchers in materials science, nanotechnologies, PhD students and graduate student.
From typical metrology parameters for common wireless and microwave components to the implementation of measurement benches, this introduction to metrology contains all the key information on the subject. Using it, readers will be able to: * Interpret and measure most of the parameters described in a microwave component's datasheet * Understand the practical limitations and theoretical principles of instrument operation * Combine several instruments into measurement benches for measuring microwave and wireless quantities. Several practical examples are included, demonstrating how to measure intermodulation distortion, error vector magnitude, S-parameters and large signal waveforms. Each chapter then ends with a set of exercises, allowing readers to test their understanding of the material covered and making the book equally suited for course use and for self-study.
Metamaterials and plasmonics are cross-disciplinary fields that are emerging into the mainstream of many scientific areas. Examples of scientific and technical fields which are concerned are electrical engineering, micro- and nanotechnology, microwave engineering, optics, optoelectronics, and semiconductor technologies. In plasmonics, the interplay between propagating electromagnetic waves and free-electron oscillations in materials are exploited to create new components and applications. On the other hand, metamaterials refer to artificial composites in which small artificial elements, through their collective interaction, creates a desired and unexpected macroscopic response function that is not present in the constituent materials. This book charts the state of the art of these fields. In May 2008, world-leading experts in metamaterials and plasmonics gathered into a NATO Advanced Research Workshop in Marrakech, Morocco. The present book contains extended versions of 22 of the presentations held in the workshop, covering the general aspects of the field, as well as design and modelling questions of plasmonics and metamaterials, fabrication issues, and applications like absorbers and antennas.
This book gives an overview on mid-infrared optical glass and fibers laser, it cover the underlying principle, historic background, as well as recent advances in materials processing and enhanced properties for rare earth doped luminescence, spectroscopy lasers, or optical nonlinearity applications. It describes in great detail, the preparation of high purity non-oxide IR glass and fibers to be used as mid-IR fiber laser and supercontinuum sources for optical fiber spectroscopy. It will be useful for academics, researchers and engineers in various disciplines who require a broad introduction to the subject and would like to learn more about the state-of-the-art and upcoming trends in mid-infrared fiber source development, particularly for industrial, medical and military applications.
This book presents not only the simultaneous combination of optical methods based on holographic principles for marker-free imaging, real-time trapping, identification and tracking of micro objects, but also the application of substantial low coherent light sources and non-diffractive beams. It first provides an overview of digital holographic microscopy (DHM) and holographic optical tweezers as well as non-diffracting beam types for minimal-invasive, real-time and marker-free imaging as well as manipulation of micro and nano objects. It then investigates the design concepts for the optical layout of holographic optical tweezers (HOTs) and their optimization using optical simulations and experimental methods. In a further part, the book characterizes the corresponding system modules that allow the addition of HOTs to commercial microscopes with regard to stability and diffraction efficiency. Further, based on experiments and microfluidic applications, it demonstrates the functionality of the combined setup, and discusses several types of non-diffracting beams and their application in optical manipulation. The book shows that holographic optical tweezers, including several non-diffracting beam types like Mathieu beams, combined parabolic and Airy beams, not only open up the possibility of generating efficient multiple dynamic traps for micro and nano particles with forces in the pico and nano newton range, but also the opportunity to exert optical torque with special beams like Bessel beams, which can facilitate the movement and rotation of particles by generating microfluidic flows. The last part discusses the potential use of a slightly modified DHM-HOT-system to explore the functionality of direct laser writing based on a two photon absorption process in a negative photoresist with a continuous wave laser
This book discusses new possibilities and trends in analog circuit design, including applications in communication, measurement and RF systems. The authors combine the main features for circuit design with actual circuit realizations and demonstrate several performance limitations with example circuits.
The book comprises a new method of solving the integral equation of Leontovich, the most rigorous and most effective equation for the current in thin linear antennas. The book describes the features of the new method in its application in various types of antennas. It considers new ways of analyzing antennas, in particular in the calculation of an antenna gain based on main radiation patterns and the calculation of the directional characteristics of radiators with known distribution of current amplitude. The method of electrostatic analogy proposed by the author, provides the base for comparison of electromagnetic fields of high-frequency currents and electrostatic charges located on linear conductors to improve the directional characteristics of log-periodic and director-type antennas. A new approach to the analysis of the electrical characteristics of a microstrip antenna, which allows expansion of its operation range, is substantiated and developed. New results of antenna synthesis are obtained. The second part of the book is devoted to specific types of antennas (the author had a significant role in their creation). Particular attention is given to ship antennas for different frequency ranges. The book is intended for professionals, working in electrodynamics and those working on development, placement and exploitation of antennas. It will be useful for lecturers (university-level professors), teachers, students of radio engineering and researchers working in various fields of radio electronics and interested in an in-depth study of theoretical problems and designs f antennas. It can also be used for short university courses.
The book systematically introduces the design theory and method of multi-band RF filtering circuits for the modern wireless communication systems or radar systems, which are required to operate at multi-bands. These multi-band filtering RF circuits have drawn more and more attention from the engineers and scientists in the field of RF circuits design. The book proposes the detailed theoretical analysis and abundant experimental data of multi-mode resonators, multi-band bandpass filter with high selectivity, reflectionless multi-band bandpass filter, balanced filter with high suppression, slotline based multi-band balun filter, switchable filtering diplexer based on reused L-shape resonator and miniaturized 55-/95-GHz on-chip dual-band bandpass Filter. The book is intended for undergraduate and graduate students who are interested in filtering circuits design, researchers who are investigating RF & microwave systems, as well as design engineers who are working in the RF & microwave circuits field. Readers can get an in-depth understanding about the multi-band RF filtering circuits design theory and method.
This book examines the human auditory effects of exposure to directed beams of high-power microwave pulses, which research results have shown can cause a cascade of health events when aimed at a human subject or the subject's head. The book details multidisciplinary investigations using physical theories and models, physiological events and phenomena, and computer analysis and simulation. Coverage includes brain anatomy and physiology, dosimetry of microwave power deposition, microwave auditory effect, interaction mechanisms, shock/pressure wave induction, Havana syndrome, and application in microwave thermoacoustic tomography (MTT). The book will be welcomed by scientists, academics, health professionals, government officials, and practicing biomedical engineers as an important contribution to the continuing study of the effects of microwave pulse absorption on humans.
High-Frequency Characterization of Electronic Packaging will be of interest to researchers and designers of high-frequency electronic packaging. Understanding high-frequency behavior of packaging is of growing importance due to higher clock-speeds in computers and higher data transmission rates in broadband telecommunication systems. Basic knowledge of the high-frequency behavior of packaging and interconnects is, therefore, indispensable for the design of future telecommunication and computer systems. High-Frequency Characterization of Electronic Packaging gives the reader an insight into how high-frequency characterization of electronic packaging should be done and describes the problems that have to be tackled, especially in performing accurate measurements on modern IC-packages and in determination of circuit models. High-Frequency Characterization of Electronic Packaging is conceived as a comprehensive guide for the start of research and to help in performing high-frequency measurements. Important notions in high- frequency characterization such as S-parameters, calibration, probing, de-embedding and measurement-based modeling are explained. The described techniques are illustrated with several up-to-date examples.
Bioimaging is a sophisticated non-invasive and non-destructive technique for direct visualization of biological processes. Highly luminescent quantum dots combined with magnetic nanoparticles or ions form an exciting class of new materials for bioimaging. These materials can be prepared in cost-effective ways and show unique optical behaviours. Magnetic Quantum Dots for Bioimaging explores leading research in the fabrication, characterization, properties, and application of magnetic quantum dots in bioimaging. * Covers synthesis, properties, and bioimaging techniques. * Discusses modern manufacturing technologies and purification of magnetic quantum dots. * Explores thoroughly the properties and extent of magnetization to various imaging techniques. * Describes the biocompatibility, suitability, and toxic effects of magnetic quantum dots. * Reviews recent innovations, applications, opportunities, and future directions in magnetic quantum dots and their surface decorated nanomaterials. This comprehensive reference offers a roadmap of the use of these innovative materials for researchers, academics, technologists, and advanced students working in materials engineering and sensor technology.
This textbook covers a typical modern syllabus in radio frequency or microwave design at final year undergraduate or first year postgraduate level. The content has been chosen to include all of the basic topics necessary to give a rigorous introduction to high-frequency technology. Both the content and presentation reflect the considerable experience which both authors have in teaching and research at university level. The material is presented from first principles, and relies only on students having a reasonable grasp of basic electronic principles. One of the key features of the book is the inclusion of an extensive set of worked examples to guide the student reader who has no prior knowledge of the subject.
This book gives a readable introduction to the important, rapidly developing, field of nanophotonics. It provides a quick understanding of the basic elements of the field, allowing students and newcomers to progress rapidly to the frontiers of their interests. Topics include: The basic mathematical techniques needed for the study of the materials of nanophotonic technology; photonic crystals and their applications as laser resonators, waveguides, and circuits of waveguides; the application of photonic crystals technology in the design of optical diodes and transistors; the basic properties needed for the design and understanding of new types of engineered materials known as metamaterials; and a consideration of how and why these engineered materials have been formulated in the lab, as well as their applications as negative refractive index materials, as perfect lens, as cloaking devices, and their effects on Cherenkov and other types of radiation. Additionally, the book introduces the new field of plasmonics and reviews its important features. The role of plasmon-polaritons in the scattering and transmission of light by rough surfaces and the enhanced transmission of light by plasmon-polariton supporting surfaces is addressed. The important problems of subwavelength resolution are treated with discussions of applications in a number of scientific fields. The basic principles of near-field optical microscopy are presented with a number of important applications. The basics of atomic cavity physics, photonic entanglement and its relation to some of the basic properties of quantum computing, and the physics associated with the study of optical lattices are presented.
MXenes offer single step processing, excellent electrical conductivity, easy heat dissipation behavior, and capacitor-like properties and are used in photodetectors, lithium-ion batteries, solar cells, photocatalysis, electrochemiluminescence sensors, and supercapacitors. Because of their superior electrical and thermal conductivities, these composites are an ideal choice in electromagnetic interference (EMI) shielding. MXene Nanocomposites: Design, Fabrication, and Shielding Applications presents a comprehensive overview of these emerging materials, including their underlying chemistry, fabrication strategies, and cutting-edge applications in EMI shielding. * Covers modern fabrication technologies, processing, properties, nanostructure formation, and mechanisms of reinforcement. * Discuss biocompatibility, suitability, and toxic effects. * Details innovations, applications, opportunities, and future directions in EMI shielding applications. This book is aimed at researchers and advanced students in materials science and engineering and is unique in its detailed coverage of MXene-based polymer composites for EMI shielding.
This book presents the latest techniques for the design of antenna, focusing specifically on the microstrip antenna. The authors discuss antenna structure, defected ground, MIMO, and fractal design. The book provides the design of microstrip antenna in terms of latest applications and uses in areas like IoT and device-to-device communication. The book also provides the current methods and techniques used for the enhancement of the performance parameters of the microstrip antenna. Chapters enhance the knowledge and skills of students and researchers in the latest in the communications world like IoT, D2D, satellite, wearable devices etc. The authors discuss applications such as microwave imaging, medical implants, hyperthermia treatments, and wireless wellness monitoring and how a decrease in size of antenna help facilitate application potential. Provides the latest techniques used for the design of antenna in terms of its structure, defected ground, MIMO and fractal design; Outlines steps to resolve issues with designing antenna, including the latest design and design parameters for microstrip antenna; Presents the design of conformal and miniaturized antenna structures for various applications.
This book covers in a textbook-like fashion the basics or organic solar cells, addressing the limits of photovoltaic energy conversion and giving a well-illustrated introduction to molecular electronics with focus on the working principle and characterization of organic solar cells. Further chapters based on the author's dissertation focus on the electrical processes in organic solar cells by presenting a detailed drift-diffusion approach to describe exciton separation and charge-carrier transport and extraction. The results, although elaborated on small-molecule solar cells and with focus on the zinc phthalocyanine: C60 material system, are of general nature. They propose and demonstrate experimental approaches for getting a deeper understanding of the dominating processes in amorphous thin-film based solar cells in general. The main focus is on the interpretation of the current-voltage characteristics (J-V curve). This very standard measurement technique for a solar cell reflects the electrical processes in the device. Comparing experimental to simulation data, the author discusses the reasons for S-Shaped J-V curves, the role of charge carrier mobilities and energy barriers at interfaces, the dominating recombination mechanisms, the charge carrier generation profile, and other efficiency-limiting processes in organic solar cells. The book concludes with an illustrative guideline on how to identify reasons for changes in the J-V curve. This book is a suitable introduction for students in engineering, physics, material science, and chemistry starting in the field of organic or hybrid thin-film photovoltaics. It is just as valuable for professionals and experimentalists who analyze solar cell devices.
Whether you are a student taking an introductory MEMS course or a practising engineer who needs to get up to speed quickly on MEMS design, this practical guide provides the hands-on experience needed to design, fabricate and test MEMS devices. You will learn how to use foundry multi-project fabrication processes for low-cost MEMS projects, as well as computer-aided design tools (layout, modeling) that can be used for the design of MEMS devices. Numerous design examples are described and analysed, from fields including micro-mechanics, electrostatics, optical MEMS, thermal MEMS and fluidic MEMS. There's also a final chapter on packaging and testing MEMS devices, as well as exercises and design challenges at the end of every chapter. Solutions to the design challenge problems are provided online.
Application as well as detection of different chemicals plays an important role in the progress of modern science and technology. The beauty of various characteristics of materials and the inherent logic behind their working mechanisms can be wisely utilized for sensing different chemicals. The mechanisms as well as performances of different materials viz. carbon nanotube, graphene, metal oxides, biomaterials, luminescent metal-organic frameworks, hydrogels, textiles, quantum dots, ligands, crown ethers etc. for identification of different chemicals has been discussed here. This book would be a valuable reference to select suitable materials for possible use in chemical sensors.
The past three decades have witnessed the great success of lithium-ion batteries, especially in the areas of 3C products, electrical vehicles, and smart grid applications. However, further optimization of the energy/power density, coulombic efficiency, cycle life, charge speed, and environmental adaptability are still needed. To address these issues, a thorough understanding of the reaction inside a battery or dynamic evolution of each component is required. Microscopy and Microanalysis for Lithium-Ion Batteries discusses advanced analytical techniques that offer the capability of resolving the structure and chemistry at an atomic resolution to further drive lithium-ion battery research and development. * Provides comprehensive techniques that probe the fundamentals of Li-ion batteries. * Covers the basic principles of the techniques involved as well as its application in battery research. * Describes details of experimental set-ups and procedure for successful experiments. This reference is aimed at researchers, engineers, and scientists studying lithium-ion batteries including chemical, materials, and electrical engineers, as well as chemists and physicists.
The book provides an overview of III-nitride-material-based light-emitting diode (LED) technology, from the basic material physics to the latest advances in the field, such as homoepitaxy and heteroepitaxy of the materials on different substrates. It also includes the latest advances in the field, such as approaches to improve quantum efficiency and reliability as well as novel structured LEDs. It explores the concept of material growth, chip structure, packaging, reliability and application of LEDs. With spectra coverage from ultraviolet (UV) to entire visible light wavelength, the III-nitride-material-based LEDs have a broad application potential, and are not just limited to illumination. These novel applications, such as health & medical, visible light communications, fishery and horticulture, are also discussed in the book.
This 2007 book is a comprehensive exposition of FET modeling, and is a must-have resource for seasoned professionals and new graduates in the RF and microwave power amplifier design and modeling community. In it, you will find descriptions of characterization and measurement techniques, analysis methods, and the simulator implementation, model verification and validation procedures that are needed to produce a transistor model that can be used with confidence by the circuit designer. Written by semiconductor industry professionals with many years' device modeling experience in LDMOS and III-V technologies, this was the first book to address the modeling requirements specific to high-power RF transistors. A technology-independent approach is described, addressing thermal effects, scaling issues, nonlinear modeling, and in-package matching networks. These are illustrated using the current market-leading high-power RF technology, LDMOS, as well as with III-V power devices. |
You may like...
Chemistry as a Second Language…
Charity Flener Lovitt, Paul Kelter
Hardcover
R2,722
Discovery Miles 27 220
Cellulose Solvents: For Analysis…
Tim Liebert, Thomas Heinze, …
Hardcover
R6,751
Discovery Miles 67 510
Advances in Teaching Physical Chemistry
Mark D. Ellison, Tracy A. Schoolcraft
Hardcover
R5,294
Discovery Miles 52 940
STEM Research for Students Volume 1…
Julia H Cothron, Ronald N Giese, …
Hardcover
R2,712
Discovery Miles 27 120
Inquiry-Based Experiments in Chemistry
Valerie Ludwig Lechtanski
Hardcover
R954
Discovery Miles 9 540
The Wear Debris Analysis Handbook
Trevor M. Hunt, Brian J. Roylance
Hardcover
R1,522
Discovery Miles 15 220
|