![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Microwave technology
Familiarization with the infrared world Thermal imaging systems extend human perception beyond the visible spectrum. Since their principle is based on the natural emission of energy by physical bodies, they represent today the subject of a great deal of interest in many fields, whether in the military field or in industry or in research laboratories. They can be employed to analyse physical properties of objects, such as their energy level or their surface appearance; they are also commonly used to observe scenes in particular conditions like night vision, or in order to increase the visibility range through haze and fogs. All of these applications exploit the properties of infrared radiation whose characteristics are described in this book. This is achieved in a manner which differs from other publications on the same subject in that the book is governed by the intention to progressively lead the reader to a complete understanding of the infrared. The author intends to link physical theory to each specific aspect of the elements involved in the detection process, from their physical origin up to energy mapping in a two-dimensional picture. However we thought that it was unnecessary to demonstrate again that which the reader will easily find in scientific literature, nor to write another data book. Our aim is to fill the gap between theory and practical application. The subject is vast: infrared systems combines a wide variety of disciplines and image interpretation depends on the precise understanding of various phenomena.
This book outlines, with the help of several specific examples, the important role played by absorption spectroscopy in the investigation of deep-level centers introduced in semiconductors and insulators like diamond, silicon, germanium and gallium arsenide by high-energy irradiation, residual impurities, and defects produced during crystal growth. It also describes the crucial role played by vibrational spectroscopy to determine the atomic structure and symmetry of complexes associated with light impurities like hydrogen, carbon, nitrogen and oxygen, and as a tool for quantitative analysis of these elements in the materials.
In 1995, James D. Taylor's Introduction to Ultra-Wideband Radar Systems introduced engineers to the theory behind a promising new concept for remote sensing. Since then, the field has undergone enormous growth with new applications realized and more applications conceptualized at a remarkable pace. However, understanding ultra-wideband (UWB) radar requires a new philosophical approach. Concepts such as radar cross section will have new meanings as range resolution becomes smaller than the target.
Rectenna Solar Cells discusses antenna-coupled diode solar cells, an emerging technology that has the potential to provide ultra-high efficiency, low-cost solar energy conversion. This book will provide an overview of solar rectennas, and provide thorough descriptions of the two main components: the diode, and the optical antenna. The editors discuss the science, design, modeling, and manufacturing of the antennas coupled with the diodes. The book will provide concepts to understanding the challenges, fabrication technologies, and materials required to develop rectenna structures. Written by experts in their specialized fields.
Multiconductor transmission lines form the basic building blocks of microwave and millimetre-wave integrated circuits, and are omnipresent in digital systems. The early chapters of this book give a detailed account of the way in which self-consistent CAD circuit models for such coupled lines, carrying either TEM or hybrid modes, can be obtained from a full-wave solution of Maxwell's equations. Most of the knowledge in the field is covered, including the latest advances for lossy lines. Subsequent chapters discuss the full-wave integral equation solution for basic transmission structures on MMICs, PCBs, and Multiwire (R) and Microwire (R) boards with the method of moments. For thin coupled microstrips and striplines the proposed space domain solution offers an alternative for the classical spectral domain approach. This book is the first to handle the full-wave analysis of discrete wire structures and of lossy polygonal conductors. The modal propogation constants and all (coupling) impedances necessary to construct a circuit model are determined.
This book highlights the proceedings of the International Conference on Atomic, Molecular, Optical and Nano-Physics with Applications (CAMNP 2019), organized by the Department of Applied Physics, Delhi Technological University, New Delhi, India. It presents experimental and theoretical studies of atoms, ions, molecules and nanostructures both at the fundamental level and on the application side using advanced technology. It highlights how modern tools of high-field and ultra-fast physics are no longer merely used to observe nature but can be used to reshape and redirect atoms, molecules, particles or radiation. It brings together leading researchers and professionals on the field to present and discuss the latest finding in the following areas, but not limited to: Atomic and Molecular Structure, Collision Processes, Data Production and Applications Spectroscopy of Solar and Stellar Plasma Intense Field, Short Pulse Laser and Atto-Second Physics Laser Technology, Quantum Optics and applications Bose Einstein condensation Nanomaterials and Nanoscience Nanobiotechnolgy and Nanophotonics Nano and Micro-Electronics Computational Condensed Matter Physics
The growth of Internet traf?c in recent years surpassed the prediction of one decade ago. Data stream in individual countries already reached terabit/s level. To cope with the petabit class demands of traf?c in coming years the communication engineers are required to go beyond the incremental improvement of today's technology. A most promising breakthrough would be the introduction of modulation f- mats enabling higher spectral ef?ciency than that of binary on-off keying scheme, virtually the global standard of ?ber-optic communication systems. In wireless communication systems, techniques of high spectral density modulation have been well developed, but the required techniques in optical frequency domain are much more complicated because of the heavier ?uctuation levels. Therefore the past trials of coherent optical modulation/detection schemes were not successful. However, the addition of high-speed digital signal processing technology is the fundam- tal difference between now and two decades ago, when trials of optical coherent communication systems were investigated very seriously. This approach of digital coherent technology has attracted keen interest among communication specialists, as indicated by the rapid increase in the pioneering presentations at the post-deadline sessions of major international conferences. For example, 32 terabit/s transmission in a ?ber experiment based on this technology was reported in post-deadline session of Optical Fiber Communication Conference (OFC) 2009. The advancement of the digital coherent technologies will inevitably affect the network architecture in terms of the network resource management for the new generation photonic networks, rather than will simply provide with huge transmission capacity.
Covers biological and health effects including oxidative stress, DNA damage, reproductive effects of mobile phones/antennas (2G, 3G, 4G), cordless phones and Wi-Fi Describes effects induced by real-life exposures by commercially available devices and antennas Illustrates biophysical and biochemical mechanisms aiming to fill the gap between recorded experimental and epidemiological findings, and their explanations Explore experimental and epidemiological facts, mechanisms of action, explanations and protection tips
This book presents a novel, automated, accurate and unified scheme to design and determine the performance characteristics of standalone planar, spiral inductors and multiple coupled planar spiral inductors (as in embedded transformers), for RF/microwave MMIC designers. The author demonstrates with a set of analysis/design examples a novel scheme that exploits judiciously the existing transmission theory and concepts, organizing and condensing available, scattered information/knowledge about planar spiral inductor, embedded planar transformer and planar antenna design and performance evaluation, into one coherent and unified electronic circuit model easily used by radio frequency electronic circuit engineers. A dedicated chapter contains an exhaustive (19) set of design examples. Presents a bottom-up scheme, starting with Maxwell's equations of classical electrodynamics and transmission line theory (Telegrapher's equation), specifically microstrips; Demonstrates design of standalone planar, spiral inductors and multiple coupled planar spiral inductors; Includes a set of ready-to-use, C executables (for both Linux and Windows) , that accept predefined input parameters for each of the sub-circuits discussed and generate SPICE netlists for the equivalent electrical circuit; Automates execution of multi-step design calculations to guarantee their accuracy and reliability.
The book gives a detailed description of optical wireless communication (OWC), including optical laser communication, visible light communication, ultraviolet communication, underwater optical communication and future communication technologies. To achieve an integration between theory and practice, the book avoids tedious mathematical deductions and includes theoretical materials as exercises. Most of the exercises are originated from published journal articles. These exercises will aid the readers in understanding the basic concept and methods and evaluating their knowledge acquisition in the field of OWC. The book is structured into Ten chapters that covers main aspects of OWC: - Optical wireless communication system - Coherent optical communication - Modulation, demodulation, and coding - Atmospheric channel, channel estimation, and channel equalization - White LED communication - Underwater laser communication - Ultraviolet communication - Acquisition, aiming, and tracking technology - Partially coherent optical transmission - Optical communication in the future The book is a suitable reference for undergraduate or postgraduate students majored in communication engineering, electronic information engineering or computer science, as well as the engineers and technicians in related fields.
This is the first book to provide comprehensive coverage of the basic theory of propagation in planar waveguides and devices. It offers an accessible and thorough self-contained guide to the understanding and solution of theoretical and practical design problems, concentrating on single-mode buried channel devices fabricated in silica-based technologies. Essential analytical and numerical techniques for determining practical waveguide attributes such as mode propagation, cutoff-wavelength, substrate leakage, bend loss, scattering due to surface roughness and fibre splicing optimization are given. The emphasis is on simple descriptions associated with straightforward analytical and numerical quantification, together with tables of parameter values for practical waveguides. Several basic passive devices are covered in detail, including X- and Y-junctions and evanescent single-mode couplers, as well as optimal curved paths for connecting arrays of these devices. Together these design recipes provide a prescription for total device design, including input, output and connecting waveguides. These planar waveguides and devices are key components of both the photonic chip and the hybrid photonic/electronic chip, which will emerge as hardware for incorporation into future optical communications systems within the information superhighway.
This reference book is designed to be used as a manual to assist in the solving of design problems. The book describes how to use information gathered and presents design data for reference. Large graphs with grid lines make it easier to extract data for specific designs.
This book outlines the fundamental physics of radiowave interaction in the earth's atmosphere at microwave and millimetre wavelengths and describes the latest techniques for predicting the performance of radio systems operating in these bands.
Offers detailed discussions of operating principles of helix and coupled-cavity traveling wave tubes, descriptions of RF interactions of electrons with electric fields, and the basic theories of electron bunching and traveling wave interactions.
Recent advances in theory and observations using passive microwave remote sensing have hightlighted the potential of spaceborne sensors for contributing to the required land surface measurements of soils, vegetation, snow cover and precipitation. Furthermore, the spatial resolution of passive microwave observations matches the special scales of large-scale models of land-atmosphere interactions both for data assimilation and validation. In order to stimulate and focus this research a workshop, sponsored by ESA and NASA, was organized to review the state-of-the-art in microwave radiometry related to land applications and to exchange ideas leading into new directions for future research. This volume contains the refereed papers from the aforementioned ESA/NASA workshop, which are arranged by topic, as well as the (edited) working group reports.
This is a textbook for upper undergraduate and graduate courses on microwave engineering, written in a student-friendly manner with many diagrams and illustrations. It works towards developing a foundation for further study and research in the field. The book begins with a brief history of microwaves and introduction to core concepts of EM waves and wave guides. It covers equipment and concepts involved in the study and measurement of microwaves. The book also discuses microwave propagation in space, microwave antennae, and all aspects of RADAR. The book provides core pedagogy with chapter objectives, summaries, solved examples, and end-of-chapter exercises. The book also includes a bonus chapter which serves as a lab manual with 15 simple experiments detailed with proper circuits, precautions, sample readings, and quiz/viva questions for each experiment. This book will be useful to instructors and students alike.
Few people know what wandering spurs are; fewer still know how to get rid of them. This book, which is written by those who raised awareness of wandering spurs, explained how they arise, and invented ways to get rid of them, contains valuable insights, analytical techniques and examples that will enable the reader to become an expert in the area. The book is aimed at circuit design professionals who need to ensure that their designs are not compromised by wandering spurs. In addition to insights, theory, and analysis, it contains practical circuit solutions, the performance of which are characterized experimentally. This book explains-using simulation, analysis, and experimental measurements-what wandering spurs are, how they arise, how to characterize them and, most importantly, how to get rid of them. The authors present not only theoretical analysis and simulation strategies, but also provide an overview of spectral analysis techniques for studying the phenomenon and convincing experimental results from both commercially available and custom-designed monolithic synthesizers. Explains what wandering spurs are and how they differ qualitatively from the well-known fixed spurs that plague fractional-N frequency synthesizers; Provides analytical and simulation methods to study wandering spurs and original analysis of the cause of this recently reported spectral phenomenon; Presents and analyses theoretical designs based on a conventional MASH 1-1-1 to mitigate wandering spurs; Describes measured performance for the discussed designs, confirming their effectiveness in mitigating wandering spurs.
Nonlinearities and optics, optoelectronics and fiber communications are discussed systematically in this book. In a unified theoretical treatment, the book addresses the three categories of materials: fibers, semiconductors, and nonlinear crystals. In each case emphasis is placed on the nonlinear character of their refractive indices and optical absorption. The text also gives an in-depth analysis of the uses and limitations of phontonic nonlinearities with regard to wavelength division multiplexing and high-speed fiber communications. It will be of interest to graduate students as well as researchers and engineers in the fields of nonlinear optics and optical communications.
Building on the success of the previous three editions, Foundations for Microstrip Circuit Design offers extensive new, updated and revised material based upon the latest research. Strongly design-oriented, this fourth edition provides the reader with a fundamental understanding of this fast expanding field making it a definitive source for professional engineers and researchers and an indispensable reference for senior students in electronic engineering. Topics new to this edition: microwave substrates, multilayer transmission line structures, modern EM tools and techniques, microstrip and planar transmision line design, transmission line theory, substrates for planar transmission lines, Vias, wirebonds, 3D integrated interposer structures, computer-aided design, microstrip and power-dependent effects, circuit models, microwave network analysis, microstrip passive elements, and slotline design fundamentals.
This resource addresses the complicated modulation schemes and higher frequencies required of today's wireless communications circuits. Covering cutting-edge developments in mixer circuits, frequency synthesizers, amplifier design, noise, and the future of wireless communication, it helps you design applications for digital cellular telephony, wireless LANs, PCS, GaAs and high-speed silicon bipolar IC technology, and low-power RF circuit technology.
This book presents posits a solution to the current limitations in global connectivity by introducing a global laser/optical communication system using constellation satellites, UAVs, HAPs and Balloons. The author outlines how this will help to satisfy the tremendous increasing demand for data exchange and information between end-users worldwide including in remote locations. The book provides both fundamentals and the advanced technology development in establishing worldwide communication and global connectivity using, (I) All-Optical technology, and (ii) Laser/Optical Communication Constellation Satellites (of different types, sizes and at different orbits), UAVs, HAPs (High Altitude Platforms) and Balloons. The book discusses step-by-step methods to develop a satellite backbone in order to interconnect a number of ground nodes clustered within a few SD-WAN (software-defined networking) in a wide area network (WAN) around the world in order to provide a fully-meshed communication network. This book pertains to anyone in optical communications, telecommunications, and system engineers, as well as technical managers in the aerospace industry and the graduate students, and researchers in academia and research laboratory. Proposed a solution to the limitations in global connectivity through a global laser/optical communication system using constellation satellites, UAVs, HAPs and Balloons; Provides both fundamentals and the advanced technology development in establishing global communication connectivity using optical technology and communication constellation satellites; Includes in-depth coverage of the basics of laser/optical communication constellation satellites.
Lithium-ion batteries are the most promising among the secondary battery technologies, for providing high energy and high power required for hybrid electric vehicles (HEV) and electric vehicles (EV). Lithium-ion batteries consist of conventional graphite or lithium titanate as anode and lithium transition metal-oxides as cathode. A lithium salt dissolved in an aprotic solvent such as ethylene carbonate and diethylene carbonate is used as electrolyte. This rechargeable battery operates based on the principle of electrochemical lithium insertion/re-insertion or intercalation/de-intercalation during charging/discharging of the battery. It is essential that both electrodes have layered structure which should accept and release the lithium-ion. In advanced lithium-ion battery technologies, other than layered anodes are also considered. High cell voltage, high capacity as well as energy density, high Columbic efficiency, long cycle life, and convenient to fabricate any size or shape of the battery, are the vital features of this battery technology. Lithium-ion batteries are already being used widely in most of the consumer electronics such as mobile phones, laptops, PDAs etc. and are in early stages of application in HEV and EV, which will have far and wide implications and benefits to society. The book contains ten chapters, each focusing on a specific topic pertaining to the application of lithium-ion batteries in Electric Vehicles. Basic principles, electrode materials, electrolytes, high voltage cathodes, recycling spent Li-ion batteries and battery charge controller are addressed. This book is unique among the countable books focusing on the lithium-ion battery technologies for vehicular applications. It provides fundamentals and practical knowledge on the lithium-ion battery for vehicular application. Students, scholars, academicians, and battery and automobile industries will find this volume useful.
The field of electromagnetic sensitivity is the new epidemic of the 21st century, and can cause disease of the automatic nerve system in any part of the body. This is as a result of chemical sensitivity, in which over 80,000 chemicals are involved, resulting in innumerable combinations. A cursory understanding of the combinations can help clinicians partially understand the associated problems and thus help in the diagnosis and treatment of electromagnetic sensitivities. But a basic understanding of environmentally induced illness and healing must first be understood by the clinicians before diseases occur such as cardiac arrhythmia, muscle spasms, and nerve pain. Key Features: Describes how an understanding of the vast combinations of electrical and chemical sensitivities will help in the diagnosis and treatment of electromagnetic sensitivities Reveals the complexity and multi-faceted presentation often seen in chemical sensitivity and chronic degenerative disease cases Provides information backed up by rigorous scientific data including hundreds of tables and figures as online resources Features a Dedication to Robert Becker, MD, an orthopedic surgeon who was one of the first clinicians to recognize the significance of EMF in medicine and surgery, and also to his assistant Andrew Marino, PhD, who helped develop the basic science of orthopedic electromagnet healing
This book will provide readers with a good overview of some of most recent advances in the field of High-Z materials. There will be a good mixture of general chapters in both technology and applications in opto-electronics, X-ray detection and emerging optoelectronics applications. The book will have an in-depth review of the research topics from world-leading specialists in the field. |
![]() ![]() You may like...
Lied Vir Sarah - Lesse Van My Ma
Jonathan Jansen, Naomi Jansen
Hardcover
![]()
Making Peace with Conflict - Practical…
Carolyn Shrock-Shenk, Lawrence Ressler
Paperback
|