Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Microwave technology
This book describes the processes of radio propagation and analyzes the equations that enable estimation of media. It explores propagation processes and related phenomena including absorption, refraction, reflection, and scattering. It also analyzes how knowledge of radiowave properties allows accurate estimations of media via inverse problems. The text examines the empirical methods that interpret remote sensing data, and how they are applied in the creation of useful approximation models. The authors also describe the operational principles of microwave devices used in remote sensing, and provide insight into the stabilizing a priori information that greatly increases the accuracy of remote sensing solutions.
Linear induction accelerators are successfully used as power supplies for numerous devices of relativistic high-frequency electronics. This book addresses ways to solve physical and engineering problems arising in the calculation, design, modeling and operation of linear induction accelerators intended for supplying relativistic microwave devices. It reviews and analyzes both classic and recent studies on the topic of linear induction accelerators (LIA) for generating and amplifying microwave radiation by relativistic devices.
III-V semiconductors have attracted considerable attention due to their applications in the fabrication of electronic and optoelectronic devices as light emitting diodes and solar cells. The electrical properties of these semiconductors can also be tuned by adding impurity atoms. Because of their wide application in various devices, the search for new semiconductor materials and the improvement of existing materials is an important field of study. Doping with impurities is a common method of modifying and diversifying the properties of physical and chemical semiconductors. This book covers all known information about phase relations in quaternary systems based on III-V semiconductors, providing he first systematic account of phase equilibria in quaternary systems based on III-V semiconductors and making research originally published in Russian accessible to the wider scientific community. Features: Contains up-to-date experimental and theoretical information Allows readers to synthesize semiconducting materials with predetermined properties Delivers a critical evaluation of many industrially important systems presented in the form of two-dimensional sections for the condensed phases
This book offers unique coverage of the mechanical properties of nano- and micro-dispersed magnetic fluids. Magnetic fluids are artificially created materials that do not exist in the nature. Researchers developing materials and devices are keenly interested in their "mutually exclusive" properties including fluidity, compressibility, and the ability to magnetize up to saturation in relatively small magnetic fields. Applications of micro- and nanodispersed magnetic fluids include magnetic-seals, magnetically operated grease in friction units and supports, separators of non-magnetic materials, oil skimmers and separators, sensors of acceleration and angle, and gap fillers in loudspeakers.
This book discusses the development of radio-wave tomography methods as a means of remote non-destructive testing, diagnostics of the internal structure of semi-transparent media, and reconstruction of the shapes of opaque objects based on multi-angle sounding. It describes physical-mathematical models of systems designed to reconstruct images of hidden objects, based on tomographic processing of multi-angle remote measurements of scattered radio and acoustic (ultrasonic) wave radiation.
The accurate design of earth-space systems requires a comprehensive understanding of the various propagation media and phenomena that differ depending on frequencies and types of applications. The choice of the relevant channel models is crucial in the design process and constitutes a key step in performance evaluation and testing of earth-space systems. The subject of this book is built around the two characteristic cases of satellite systems: fixed satellites and mobile satellite systems. Radio Wave Propagation and Channel Modeling for Earth-Space Systems discusses the state of the art in channel modeling and characterization of next-generation fixed multiple-antennas and mobile satellite systems, as well as propagation phenomena and fade mitigation techniques. The frequencies of interest range from 100 MHz to 100 GHz (from VHF to W band), whereas the use of optical free-space communications is envisaged. Examining recent research advances in space-time tropospheric propagation fields and optical satellite communication channel models, the book covers land mobile multiple antennas satellite- issues and relative propagation campaigns and stratospheric channel models for various applications and frequencies. It also presents research and well-accepted satellite community results for land mobile satellite and tropospheric attenuation time-series single link and field synthesizers. The book examines aeronautical communications channel characteristics and modeling, relative radio wave propagation campaigns, and stratospheric channel model for various applications and frequencies. Propagation effects on satellite navigation systems and the corresponding models are also covered.
Directional antenna technologies have made significant advancements in the last decade. These advances have opened the door to many exciting new design opportunities for wireless networks to enhance quality of service (QoS), performance, and network capacity. In this book, experts from around the world present the latest research and development in wireless networks with directional antennas. Their contributed chapters provide detailed coverage of the models, algorithms, protocols, and applications of wireless networks with various types of directional antennas operating at different frequency bands. Wireless Network Performance Enhancement via Directional Antennas: Models, Protocols, and Systems identifies several interesting research problems in this important field, providing an opportunity to learn about solid solutions to these issues. It also looks at a number of practical hardware designs for the deployment of next-generation antennas, as well as efficient network protocols for exploitation of directional communications. The book is organized into six sections: Directional Antennas - covers the hardware design of different types of antennas Directional MAC - focuses on the principles of designing medium access control (MAC) protocols for directional networks Millimeter Wave - explores different design aspects of millimeter wave (mm-Wave) systems, which operate in higher-frequency bands (such as 60 GHz) MIMO - explains how to establish a multiple-input, multiple-output (MIMO) antenna system and describes how it operates in a cognitive radio network Advanced Topics - looks at additional topics such as beamforming in cognitive radio networks, multicast algorithm development, network topology management for connectivity, and sensor network lifetime issues Applications - illustrates some important applications, such as military networks and airborne networking, that benefit from directional networking designs With this book, researchers and engineers will be well-equipped to advance the research and development in this important field. If you're new to this field, you will find this book to be a valuable reference on basic directional networking principles, engineering design, and challenges.
The theory and practice of the non-linear optics of silicon are inextricably linked with a variety of areas of solid state physics, particularly semiconductor physics. However, the current literature linking these fields is scattered across various sources and is lacking in depth. Second Order Non-linear Optics of Silicon and Silicon Nanostructures describes the physical properties of silicon as they apply to non-linear optics while also covering details of the physics of semiconductors. The book contains six chapters that focus on: The physical properties and linear optics of silicon Basic theoretical concepts of reflected second harmonics (RSH) The authors' theory of the generation of RSH at the non-linear medium-linear medium interface An analytical review of work on the non-linear optics of silicon The results of non-linear optical studies of silicon nanostructures A theory of photoinduced electronic processes in semiconductors and their influence on RSH generation The book also includes methodological problems and a significant amount of reference data. It not only reflects the current state of research but also provides a single, thorough source of introductory information for those who are becoming familiar with non-linear optics. Second Order Non-linear Optics of Silicon and Silicon Nanostructures is a valuable contribution to the fields of non-linear optics, semiconductor physics, and microelectronics, as well as a useful resource for a wide range of readers, from undergraduates to researchers.
Application as well as detection of different chemicals plays an important role in the progress of modern science and technology. The beauty of various characteristics of materials and the inherent logic behind their working mechanisms can be wisely utilized for sensing different chemicals. The mechanisms as well as performances of different materials viz. carbon nanotube, graphene, metal oxides, biomaterials, luminescent metal-organic frameworks, hydrogels, textiles, quantum dots, ligands, crown ethers etc. for identification of different chemicals has been discussed here. This book would be a valuable reference to select suitable materials for possible use in chemical sensors.
Recent advances in our understanding of complex composite media, especially chiral media for microwave applications, suggest the feasibility of creating novel materials with unusual properties and the possibility of constructing new microwave devices using such materials. The emphasis of the book is on bi-anisotropic materials, whose most interesting feature is the magnetoelectric interaction of the fields. The materials are expected to supply useful applications in radar technology, aerospace, microwave engineering, manufacturing technology, etc., such as absorbers for low-reflectivity shields, reciprocal phase shifters, polarization transformers. The first experiments with artificial bi-anisotropic media have been successfully carried out.
This volume presents selected contributions from the "Advanced Research Workshop on Explosives Detection" hosted by the Department of Information Engineering of the University of Florence, Italy in 2018. The main goal of the workshop was to find out how Science for Peace and Security projects in the field of Explosives Detection contribute to the development and/or refinement of scientific and technical knowledge and competencies. The findings of the workshop, presented in the last section of the book, determine future actions and direction of the SPS Programme in the field of explosives detection and management.The NATO Science for Peace and Security (SPS) Programme, promotes dialogue and practical cooperation between NATO member states and partner nations based on scientific research, technological innovation and knowledge exchange. Several initiatives were launched in the field of explosive detection and clearance, as part of NATO's enhanced role in the international fight against terrorism. Experts and scientists from NATO members and partner countries have been brought together in multi-year projects, within the framework of the SPS Programme, to cooperate in the scientific research in explosive detection field, developing new technologies and methods to be implemented in order to detect explosive substances in different contexts.
This book proposes innovative circuit, architecture, and system solutions in deep-scaled CMOS and FinFET technologies, which address the challenges in maximizing the accuracy*speed/power of multi-GHz sample rate and bandwidth Analog-to-Digital Converters (ADC)s. A new holistic approach is introduced that first identifies the major error sources of a converter' building blocks, and quantitatively analyzes their impact on the overall performance, establishing the fundamental circuit-imposed accuracy - speed - power limits. The analysis extends to the architecture level, by introducing a mathematical framework to estimate and compare the accuracy - speed - power limits of several ADC architectures and variants. To gain system-level insight, time-interleaving is covered in detail, and a framework is also introduced to compare key metrics of interleaver architectures quantitatively. The impact of technology is also considered by adding process effects from several deep-scaled CMOS technologies. The validity of the introduced analytical approach and the feasibility of the proposed concepts are demonstrated by four silicon prototype Integrated Circuits (IC)s, realized in ultra-deep-scaled CMOS and FinFET technologies. Introduces a new, holistic approach for the analysis and design of high-performance ADCs in deep-scaled CMOS technologies, from theoretical concepts to silicon bring-up and verification; Describes novel methods and techniques to push the accuracy - speed - power boundaries of multi-GHz ADCs, analyzing core and peripheral circuits' trade-offs across the entire ADC chain; Supports the introduced analysis and design concepts by four state-of-the-art silicon prototype ICs, implemented in 28nm bulk CMOS and 16nm FinFET technologies; Provides a useful reference and a valuable tool for beginners as well as experienced ADC design engineers.
Delay- and Disruption Tolerant Networks (DTNs) are networks subject to arbitrarily long-lived disruptions in connectivity and therefore cannot guarantee end-to-end connectivity at all times. Consequently DTNs called for novel core networking protocols since most existing Internet protocols rely on the network's ability to maintain end-to-end communication between participating nodes. This book presents the fundamental principles that underline DTNs. It explains the state-of-the-art on DTNs, their architecture, protocols, and applications. It also explores DTN's future technological trends and applications. Its main goal is to serve as a reference for researchers and practitioners.
Metamaterials: Beyond Crystals, Noncrystals, and Quasicrystals is a comprehensive and updated research monograph that focuses on recent advances in metamaterials based on the effective medium theory in microwave frequencies. Most of these procedures were conducted in the State Key Laboratory of Millimeter Waves, Southeast University, China. The book conveys the essential concept of metamaterials from the microcosmic structure to the macroscopic electromagnetic properties and helps readers quickly obtain needed skills in creating new devices at microwave frequencies using metamaterials. The authors present the latest progress on metamaterials and transformation optics and provide abundant examples of metamaterial-based devices accompanied with detailed procedures to simulate, fabricate, and measure them. Comprised of ten chapters, the book comprehensively covers both the fundamentals and the applications of metamaterials. Along with an introduction to the subject, the first three chapters discuss effective medium theory and artificial particles. The next three chapters cover homogeneous metamaterials (super crystals), random metamaterials (super noncrystals), and inhomogeneous metamaterials (super quasicrystals). The final four chapters examine gradient-index inhomogeneous metamaterials, nearly isotropic inhomogeneous metamaterials, and anisotropic inhomogeneous metamaterials, after which the authors provide their conclusions and closing remarks. The book is completely self-contained, making it easy to follow.
Provides an introduction to fundamental mixer types, as well as variations on the classical mixer designs.
The multiple signal demixing and parameter estimation problems that result from the impacts of background noise and interference are issues that are frequently encountered in the fields of radar, sonar, communications, and navigation. Research in the signal processing and control fields has always focused on improving the estimation performance of parameter estimation methods at low SNR and maintaining the robustness of estimations in the presence of model errors. This book presents a universal and robust relaxation estimation method (RELAX), and introduces its basic principles and applications in the fields of classical line spectrum estimation, time of delay estimation, DOA estimation, and radar target imaging. This information is explained comprehensively and in great detail, and uses metaphors pertaining to romantic relationships to visualize the basic problems of parameter estimation, the basic principles of the five types of classical parameter estimation methods, and the relationships between these principles. The book serves as a reference for scientists and technologists in the fields of signal processing and control, while also providing relevant information for graduate students in the related fields.
Discover nontraditional applications of dielectric studies in this exceptionally crafted field reference or text for seniors and graduate students in power engineering tracks. This text contains more than 800 display equations and discusses polarization phenomena in dielectrics, the complex dielectric constant in an alternating electric field, dielectric relaxation and interfacial polarization, the measurement of absorption and desorption currents in time domains, and high field conduction phenomena. Dielectrics in Electric Fields is an interdisciplinary reference and text for professionals and students in electrical and electronics, chemical, biochemical, and environmental engineering; physical, surface, and colloid chemistry; materials science; and chemical physics.
Semiconductor nanocrystals and metal nanoparticles are the building blocks of the next generation of electronic, optoelectronic, and photonic devices. Covering this rapidly developing and interdisciplinary field, the book examines in detail the physical properties and device applications of semiconductor nanocrystals and metal nanoparticles. It begins with a review of the synthesis and characterization of various semiconductor nanocrystals and metal nanoparticles and goes on to discuss in detail their optical, light emission, and electrical properties. It then illustrates some exciting applications of nanoelectronic devices (memristors and single-electron devices) and optoelectronic devices (UV detectors, quantum dot lasers, and solar cells), as well as other applications (gas sensors and metallic nanopastes for power electronics packaging). Focuses on a new class of materials that exhibit fascinating physical properties and have many exciting device applications. Presents an overview of synthesis strategies and characterization techniques for various semiconductor nanocrystal and metal nanoparticles. Examines in detail the optical/optoelectronic properties, light emission properties, and electrical properties of semiconductor nanocrystals and metal nanoparticles. Reviews applications in nanoelectronic devices, optoelectronic devices, and photonic devices.
Advanced Electromagnetic Computation with MATLAB (R) discusses commercial electromagnetic software, widely used in the industry. Algorithms of Finite Differences, Moment method, Finite Element method and Finite Difference Time Domain method are illustrated. Hand-computed simple examples and MATLAB-coded examples are used to explain the concepts behind the algorithms. Case studies of practical examples from transmission lines, waveguides, and electrostatic problems are given so students are able to develop the code and solve the problems. Two new chapters including advanced methods based on perturbation techniques and three dimensional finite element examples from radiation scattering are included.
This reference book concentrates on microstructuring surfaces of optical materials with directed fluxes of off-electrode plasma generated by high-voltage gas discharge and developing methods and equipment related to this technique. It covers theoretical and experimental studies on the electrical and physical properties of high-voltage gas discharges used to generate plasma outside an electrode gap. A new class of methods and devices that makes it possible to implement a series of processes for fabricating diffraction microstructures on large format wafers is also discussed.
Due to its physical, chemical, and material properties, graphene has been widely studied both theoretically and experimentally since it was first synthesized in 2004. This book explores in detail the most up-to-date research in graphene-related systems, including few-layer graphene, sliding bilayer graphene, rippled graphene, carbon nanotubes, and adatom-doped graphene, among others. It focuses on the structure-, stacking-, layer-, orbital-, spin- and adatom-dependent essential properties, in which single- and multi-orbital chemical bondings can account for diverse phenomena. Geometric and Electronic Properties of Graphene-Related Systems: Chemical Bonding Schemes is excellent for graduate students and researchers, but understandable to undergraduates. The detailed theoretical framework developed in this book can be used in the future characterization of emergent materials.
Doped by isovalent or heterovalent foreign impurities, II-VI semiconductor compounds enable control of optical and electronic properties, making them ideal in detectors, solar cells, and other precise device applications. Quaternary alloys allow a simultaneous adjustment of band gap and lattice constant, increasing radiant efficiency at a wide range of wavelengths. Quaternary Alloys Based on II-VI Semiconductors consolidates data pertaining to diagrams of quaternary systems based on these semiconductor compounds. The book illustrates up-to-date experimental and theoretical information about phase relations based on II-VI semiconductor systems with four components. It critically evaluates many industrially significant systems presented in two-dimensional sections for the condensed phases. The author classifies all materials according to the periodic groups of their constituent atoms and additional components in the order of their group number. Each quaternary database description contains brief information on the diagram type, possible phase transformations and physical-chemical interactions of the components, thermodynamic characteristics, and methods for equilibrium investigation and sample preparation. Most of the phase diagrams are in their original form. For those with varying published data, the text includes several versions for comparison. This book provides invaluable data for technologists and researchers involved in developing and manufacturing II-VI semiconductors at industrial and national laboratories. It is also suitable for phase relations researchers, inorganic chemists, and semiconductor physicists as well as graduate students in materials science and engineering. Check out the companion books: Ternary Alloys Based on II-VI Semiconductor Compounds and
The Finite-Difference Time-domain (FDTD) method allows you to compute electromagnetic interaction for complex problem geometries with ease. The simplicity of the approach coupled with its far-reaching usefulness, create the powerful, popular method presented in The Finite Difference Time Domain Method for Electromagnetics. This volume offers timeless applications and formulations you can use to treat virtually any material type and geometry. The Finite Difference Time Domain Method for Electromagnetics explores the mathematical foundations of FDTD, including stability, outer radiation boundary conditions, and different coordinate systems. It covers derivations of FDTD for use with PEC, metal, lossy dielectrics, gyrotropic materials, and anisotropic materials. A number of applications are completely worked out with numerous figures to illustrate the results. It also includes a printed FORTRAN 77 version of the code that implements the technique in three dimensions for lossy dielectric materials. There are many methods for analyzing electromagnetic interactions for problem geometries. With The Finite Difference Time Domain Method for Electromagnetics, you will learn the simplest, most useful of these methods, from the basics through to the practical applications.
Gallium Arsenide and Related Compounds 1991emphasizes current results on the materials, characterization, and device aspects of a broad range of semiconductor materials, particularly the III-V compounds and alloys. The book is a valuable reference for researchers in physics, materials science, and electronics and electrical engineering who work on III-V compounds.
Antenna Theory and Microstrip Antennas offers a uniquely balanced analysis of antenna fundamentals and microstrip antennas. Concise and readable, it provides theoretical background, application materials, and details of recent progress. Exploring several effective design approaches, this book covers a wide scope, making it an ideal hands-on resource for professionals seeking a refresher in the fundamentals. It also provides the basic grounding in antenna essentials that is required for those new to the field. The book's primary focus is on introducing practical techniques that will enable users to make optimal use of powerful commercial software packages and computational electromagnetics used in full wave analysis and antenna design. Going beyond particular numerical computations to teach broader concepts, the author systematically presents the all-important spectral domain approach to analyzing microstrip structures including antennas. In addition to a discussion of near-field measurement and the high-frequency method, this book also covers: Elementary linear sources, including Huygen's planar element, and analysis and synthesis of the discrete and continuous arrays formed by these elementary sources The digital beam-forming antenna and smart antenna Cavity mode theory and related issues, including the design of irregularly shaped patches and the analysis of mutual coupling Based on much of the author's own internationally published research, and honed by his years of teaching experience, this text is designed to bring students, engineers, and technicians up to speed as efficiently as possible. This text purposefully emphasizes principles and includes carefully selected sample problems to ease the process of understanding the often intimidating area of antenna technology. Paying close attention to this text, you will be able to confid |
You may like...
Advances in Communication Systems and…
J. Jayakumari, George K. Karagiannidis, …
Hardcover
R5,628
Discovery Miles 56 280
Handbook of Research on Advanced Trends…
Ahmed El Oualkadi, Jamal Zbitou
Hardcover
R8,280
Discovery Miles 82 800
Surrogate Modeling For High-frequency…
Slawomir Koziel, Anna Pietrenko-Dabrowska
Hardcover
R3,977
Discovery Miles 39 770
Practical Approach to Substrate…
Augustine Onyenwe Nwajana, Kenneth Siok Kiam Yeo
Hardcover
R5,609
Discovery Miles 56 090
Antenna Architectures for Future…
Shiban Kishen Koul, Karthikeya G S
Hardcover
R3,625
Discovery Miles 36 250
Progress in the Science of Functional…
Yousuke Ooyama, Shigeyuki Yagi
Hardcover
R4,945
Discovery Miles 49 450
|