![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Microwave technology
This book develops the analytical theory of perfectly conducting and lossy metal, circular, round-wire loop antennas and nano-scaled rings from the radio frequency (RF) regime through infrared and the optical region. It does so from an antenna theory perspective. It is the first time that all of the historical material found in the literature has appeared in one place. It includes, particularly, material that has appeared in the literature only in the last decade and some new material that has not yet been published. The book derives the input impedance, resonances and anti-resonances, the RLC circuit model representation, and radiation patterns not only of closed loops and rings, but also of loops and rings loaded randomly and multiply with resistive and reactive impedances. Every derivation is compared with simulations run in Microwave Studio (MWS). It looks carefully at the physical response of loop antennas and nano-rings coupled to a source at one point in the periphery and at such rings illuminated by a plane wave arriving from every different direction with the E-field in all polarizations. The book ends with a brief look at polygonal loops, two dimensional arrays of nano-rings, and Yagi-Uda arrays.
III-V semiconductors have attracted considerable attention due to their applications in the fabrication of electronic and optoelectronic devices as light emitting diodes and solar cells. The electrical properties of these semiconductors can also be tuned by adding impurity atoms. Because of their wide application in various devices, the search for new semiconductor materials and the improvement of existing materials is an important field of study. This book covers all known information about phase relations in multinary systems based on III-V semiconductors, providing the first systematic account of phase equilibria in multinary systems based on III-V semiconductors and making research originally published in Russian accessible to the wider scientific community. This book will be of interest to undergraduate and graduate students studying materials science, solid state chemistry, and engineering. It will also be relevant for researchers at industrial and national laboratories, in addition to phase diagram researchers, inorganic chemists, and solid state physicists. Features: Provides up-to-date experimental and theoretical information Allows readers to synthesize semiconducting materials with predetermined properties Delivers a critical evaluation of many industrially important systems presented in the form of two-dimensional sections for the condensed phases
Because of unique water properties, humidity affects many living organisms, including humans and materials. Humidity control is important in various fields, from production management to creating a comfortable living environment. The second volume of The Handbook of Humidity Measurement is entirely devoted to the consideration of different types of solid-state devices developed for humidity measurement. This volume discusses the advantages and disadvantages about the capacitive, resistive, gravimetric, hygrometric, field ionization, microwave, Schottky barrier, Kelvin probe, field-effect transistor, solid-state electrochemical, and thermal conductivity-based humidity sensors. Additional features include: Provides a comprehensive analysis of the properties of humidity-sensitive materials, used for the development of such devices. Describes numerous strategies for the fabrication and characterization of humidity sensitive materials and sensing structures used in sensor applications. Explores new approaches proposed for the development of humidity sensors. Considers conventional devices such as phsychometers, gravimetric, mechanical (hair), electrolytic, child mirror hygrometers, etc., which were used for the measurement of humidity for several centuries. Handbook of Humidity Measurement, Volume 2: Electronic and Electrical Humidity Sensors provides valuable information for practicing engineers, measurement experts, laboratory technicians, project managers in industries and national laboratories, as well as university students and professors interested in solutions to humidity measurement tasks as well as in understanding fundamentals of any gas sensor operation and development.
Reconfigurable RF-frontends aim to cope with the continuous pursuit of wider frequency coverage, higher efficiency, further compactness and lower cost of ownership. They are expected to lay the foundations of future software defined or cognitive radios. As a potential enabling technology for the frontends, the tunable ferroelectric devices have shown not only enhanced performance but also new functionalities. This book explores the recent developments in the field. It provides a cross-sectional perspective on the interdisciplinary research. With attention to the devices based on ceramic thick-films and crystal thin-films, the book reviews the adapted technologies of material synthesis, film deposition and multilayer circuitry. Next, it highlights the original classes of thin-film ferroelectric devices, including stratified metal-insulator-metal varactors with suppression of acoustic resonance and programmable bi-stable high frequency capacitors. At the end the book analyzes how the frontends can be reformed by tunable multiband antennas, tunable single- and multiband impedance matching networks and tunable substrate integrated waveguide filters, which are all built on low cost ferroelectric thick-films. For all the above devices, the theoretical analyses, modeling and design methods are elaborated, while through demonstrative prototypes the application potential is evaluated.
A comprehensive and unique account of the creation of artificially
ionized layers in the middle and upper atmosphere, using powerful
radio waves. Major physical mechanisms associated with the
formation of the ionized region are studied in detail. The main
part of the author's research is devoted to problems associated
with the breakdown mechanisms for radio frequency discharges in
air. A special chapter deals with breakdown in intersecting pulsed
beams and the effects of recombination, diffusion and atmospheric
winds on the stability of the structure. The kinetics of the plasma
produced are also described.
This text deals with the advantages of rare earth activated phosphors for the development of solid state lighting technology and in enhancing the light conversion efficiency of Si solar cells. The book initiates with a short overview of the atomic and semiconductor theory followed by introduction to phosphor, its working mechanism, role of rare earth ions in the lighting and PV devices and host materials being used. Further, it introduces the applications of inorganic phosphor for the development of green energy and technology including advantages of UP/DC conversion phosphor layers in the enhancing the cell response of PV devices. Key Features: Focuses on discussion of phosphors for both solid state lighting and photovoltaics applications Provides introduction for practical applications including synthesis and characterization of phosphor materials Includes broad, in-depth introduction of semiconductors and related theory Enhances the basic understanding of optical properties for rare earth phosphors Covers up-conversion and down-conversion phosphor for energy harvesting applications
Spectral Theory of Guided Waves represents a distillation of the authors' (and others) efforts over several years to rigorously discuss many of the properties of guided waves. The bulk of the book deals with the properties of eigenwaves of regular waveguiding systems and relates these to a variety of physical situations and applications to illustrate their generality. The book also includes considerable discussion of the basic properties of normal waves with quadratic operator pencils. Unique in its coverage of these subjects, the book will be of interest to engineers, applied mathematicians, and physicists with a working knowledge of functional analysis and spectral theory.
Quantum Aspects of Light Propagation provides an overview of spatio-temporal descriptions of the electromagnetic field in linear and nonlinear dielectric media, appropriate to macroscopic and microscopic theories. Readers will find an introduction to canonical quantum descriptions of light propagation in a nonlinear dispersionless dielectric medium, and an approach to linear and nonlinear dispersive dielectric media. Illustrated by optical processes, these descriptions are simplified by a transition to one-dimensional propagation. Quantum theories of light propagation in optical media are generalized from dielectric media to magnetodielectrics, in addition to a presentation of classical and nonclassical properties of radiation propagating through negative-index media. Valuable analyses of quantization in waveguides, photonic crystals, and propagation in strongly scattering media are also included, along with various optical resonator properties. The theories are utilized for the quantum electrodynamical effects to be determined in periodic dielectric structures which are known to be a basis of new schemes for lasing and a control of light field state. Quantum Aspects of Light Propagation is a valuable reference for researchers and engineers involved with general optics, quantum optics and electronics, nonlinear optics, and photonics.
The main thrust of the rapid advance of microwave technology over the past four decades has been directed toward and powered by the development of new solid-state devices and circuits. In many cases, however, technological development has advanced with such speed that it has laxed the ability of professionals and educators to keep up with it, leaving both students and working electrical engineers with an incomplete knowledge of modern microwave technologies. Microwave Solid-State Circuits and Applications offers a comprehensive presentation of microwave technologies based on solid-state devices and circuits, with emphasis on operational principles and techniques for incorporating these devices into circuit applications. Fundamental design equations are derived and practical examples are given whenever possible. More than 300 illustrations serve to clarify principles and concepts under discussion, and a set of problems at the end of each chapter helps strengthen students' grasp of the subject. The book is organized into three sections: a review of fundamental principles in transmission lines and circuits, and semiconductor physics; two-terminal solid-state devices, circuits, and applications; and three-terminal solid-state devices, circuits, and applications. In addition, there is a special chapter on noise figures and some system parameters for receiver design. An ideal textbook for one-semester, senior-level or graduate courses in microwave solid-state circuits, this self-contained volume is also an excellent reference for practicing microwave, antenna, and solid-state engineers.
This extremely well organized introduction focuses on the special interactions that occur between circuits and devices. Understanding these interactions leads to an understanding of design and performance characteristics of solid-state microwave amplifiers and oscillators. The text is presented in three roughly equal sections, with each of the first two sections laying the groundwork for the third. The first five chapters present a detailed exposition of microwave circuits, their parameters, and how they are characterized. Topics discussed include transmission lines, waveguides, microstrip lines, Smith Chart analysis, linear network parameters, resonator-transmission line coupling and filters, and more. The discussion of solid-state devices, which constitutes the second part of the book, begins with sufficient theory to understand the operating principles of the devices discussed, including: Schottky barrier diodes, microwave transistors, varactor diodes, IMPATT diodes, and Gunn diodes. The final part of the book concerns the large signal effects produced in amplifiers and oscillators when solid-state devices are embedded in microwave circuits. Extended discussions include: transistor amplifier properties; the behavior of two-terminal negative resistance amplifiers with amplitude dependent negative resistance and susceptance; stability and locking characteristics of oscillators; and fundamental noise properties of amplifiers and the phase and amplitude noise of oscillators. With its dual emphasis on linear and nonlinear characteristics and a large number of completely worked-out examples, Microwave Devices, Circuits and Their Interaction is perfectly suited as a textbook for senior orfirst-year graduate courses. It is also a valuable tool for practicing engineers and scientists who wish to increase their understanding of microwave systems.
Network scattering parameters are powerful tools for the analysis and design of high frequency and microwave networks. A comprehensive review of network scattering parameters is given with detailed discussion of their application in the analysis of stability, input and output reflection coefficients, power gains and other network parameters. Generalised scattering parameters are introduced in later chapters. The aim of this book is to give a thorough working knowledge of scattering parameters and their application in circuit analysis and design. To this end numerous illustrative examples are given in each chapter. The book should prove to be a useful companion to practicing engineers, as well as, to students and teachers in the field of HF, microwaves and optics.
This book provides up-to-date information on the application of nano-sized materials in energy devices. A brief overview on the properties of nano-sized materials introduces the readers to the basics of the application of such materials in energy devices. Among the energy devices covered include third generation solar cells, fuel cells, batteries, and supercapacitors. The book places emphasis on the optical, electrical, morphological, surface, and spectroscopic properties of the materials. It contains both experimental as well as theoretical aspects for different types of nano-sized materials, such as nanoparticles, nanowires, thin film, etc.
This book presents innovative strategies to implement ultra-low voltage (ULV) and low power active circuits used in low energy RF receivers. The authors demonstrate that the use of single-stage amplifiers with the input negative transconductance compensation is a key strategy to allow the operation at low voltage levels with reduced power dissipation. Also, some design methodologies, based on the CMOS transistor operation point, are analyzed and a powerful design methodology is described for this kind of circuit. Readers will be enabled to implement the techniques described to design communication circuits with low power dissipation, useful in a variety of applications, including IoT/IoE devices.
This work addresses the basic principles, synthesis / fabrication and applications of smart materials, specifically shape memory materials Based on origin, the mechanisms of transformations vary in different shape memory materials and are discussed in different chapters under titles of shape memory alloys, ceramics, gels and polymers Complete coverage of composite formation with polymer matrix and reinforcement filler conductive materials with examples
Do you need to know what signal type to select for a wireless application? Quickly develop a useful expertise in digital modulation with this practical guide, based on the author's experience of over thirty years in industrial design. You will understand the physical meaning behind the mathematics of wireless signals and learn the intricacies and tradeoffs in signal selection and design. Six modulation families and twelve modulation types are covered in depth, together with a quantitative ranking of relative cost incurred to implement any of twelve modulation types. Extensive discussions of the Shannon Limit, Nyquist filtering, efficiency measures and signal-to-noise measures are provided, radio wave propagation and antennas, multiple access techniques, and signal coding principles are all covered, and spread spectrum and wireless system operation requirements are presented.
Technical and Military Imperatives: A Radar History of World War II is a coherent account of the history of radar in the second World War. Although many books have been written on the early days of radar and its role in the war, this book is by far the most comprehensive, covering ground, air, and sea operations in all theatres of World War II. The author manages to synthesize a vast amount of material in a highly readable, informative, and enjoyable way. Of special interest is extensive new material about the development and use of radar by Germany, Japan, Russia, and Great British. The story is told without undue technical complexity, so that the book is accessible to specialists and nonspecialists alike.
Introduction to PCM Telemetering Systems, Third Edition summarizes the techniques and terminology used in sending data and control information between users and the instruments that collect and process the data. Fully revised, it gives an overall systems introduction to the relevant topics in three primary areas: system interfaces; data transport, timing, and synchronization; and data transmission techniques. Integrating relevant information about the process at all levels from the user interface down to the transmission channel, this will also include how designers apply relevant industry and government standards at each level in this process. Homework problems are included at the end of each chapter.
Recent advances in technology have led to the unprecedented accuracy in measurements of endogenous electric fields around sites of tissue disruption. State-of-the-art molecular approaches demonstrate the role of bioelectricity in the directionality and speed of cell migration, proliferation, apoptosis, differentiation, and orientation. New information indicates that electric fields play a role in initiating and coordinating complex regenerative responses in development and wound repair and that they may also have a part in cancer progression and metastasis. Compiling current research in this rapidly expanding field, Physiology of Bioelectricity in Development, Tissue Regeneration, and Cancer highlights relevant, cutting-edge topics poised to drive the next generation of medical breakthroughs. Chapters consider methods for detecting endogenous electric field gradients and studying applied electric fields in the lab. The book addresses bioelectricity's roles in guiding cell behavior during morphogenesis and orchestrating higher order patterning. It also covers the response of stem cells to applied electric fields, which reveals bioelectricity as an exciting new player in tissue engineering and regenerative medicine. This book provides an in-depth exploration of how electric signals control corneal wound repair and skin re-epithelialization, angiogenesis, and inflammation. It also delves into the bioelectric responses of cells derived from the musculoskeletal system, bioelectrical guidance of neurons, and the beneficial application of voltage gradients to promote regeneration in the spinal cord. It concludes with a discussion of bioelectricity and cancer progression and the potential for novel cancer biomarkers, new methods for early detection, and bioelectricity-based therapies to target both the tumor and metastatic cancer cells. This multidisciplinary compilation will benefit biologists, biochemists, biomedical scientists, engineers, dermatologists, and clinicians, or anyone else interested in development, regeneration, cancer, and tissue engineering. It can also serve as an ideal textbook for students in biology, medicine, medical physiology, biophysics, and biomedical engineering.
Optical communication networks have played and will continue to play a prominent role in the development and deployment of communication network infrastructures. New optical systems and protocols will enable next generation optical networks to meet the diverse requirements from a wide range of new applications and services. Optical networks have evolved to become more flexible, intelligent and reliable. New optical switching architectures, technologies, and sophisticated control and management protocols have already enabled optical networks to be used not only in the core but also the metropolitan and access networks. The widespread deployment of optical communication networks will continue to have a big impact on our future lifestyle. Current Research Progress of Optical Networks is aimed to provide an overview on recent research progresses in optical networking with proposed solutions, survey and tutorials on various issues and topics in optical network technologies and services.
Recent research has brought the application of microwaves from the classical fields of heating, communication, and generation of plasma discharges into the generation of compact plasmas that can be used for applications such as FIB and small plasma thrusters. However, these new applications bring with them a new set of challenges. With coverage ranging from the basics to new and emerging applications, Compact Plasma and Focused Ion Beams discusses how compact high-density microwave plasmas with dimensions smaller than the geometrical cutoff dimension can be generated and utilized for providing focused ion beams of various elements. Starting with the fundamentals of the cutoff problem for wave propagation in waveguides and plasma diagnostics, the author goes on to explain in detail the plasma production by microwaves in a compact geometry and narrow tubes. He then thoroughly discusses wave interaction with bounded plasmas and provides a deeper understanding of the physics. The book concludes with an up-to-date account of recent research on pulsed microwaves and the application of compact microwave plasmas for multi-element FIB. It provides a consolidated and unified description of the emerging areas in plasma science and technology utilizing wave-based plasma sources based on the author's own work and experience. The book will be useful not only to established researchers in this area but will also serve as an excellent introduction to those interested in applying these ideas to various current and new applications.
Radiophysical and Geomagnetic Effects of Rocket Burn and Launch in the Near-the-Earth Environment describes experimental and theoretical studies on the effects of rocket burns and launchings on the near-the-Earth environment and geomagnetic fields. It illuminates the main geophysical and radiophysical effects on the ionosphere and magnetosphere surrounding the Earth that accompany rocket or cosmic apparatus burns and launchings from 1,000 to 10,000 kilometers. The book analyzes the disturbances of plasma and the ambient magnetic and electric fields in the near-Earth environment from rocket burns and launchings from Russia, Kazakhstan, the United States, China, France, and other global space centers. Describing the radiophysical effects of rocket burn and launching in the middle and upper ionosphere, it focuses on the ecological consequences of space exploration-detailing methods for eliminating the harmful effects of space exploration. Measurements for the studies presented in the book were carried out using numerous radiophysical methods and techniques, including HF Doppler radar, incoherent and coherent scatter radar systems, microwave radar, magnetometer, and optical instrumentation and spectroscopy. The book analyzes the effects of rocket burns and launchings from 1975 to 2010 in worldwide launch campaigns. This book is an ideal reference for scientists in geophysics and radiophysics, specialists in rocket launching, and ecologists. It is also suitable as a fundamental handbook for graduate and postgraduate students taking physics and cosmic sciences courses at the university level.
Piezoelectric Materials and Devices: Applications in Engineering and Medical Sciences provides a complete overview of piezoelectric materials, covering all aspects of the materials starting from fundamental concepts. The treatment includes physics of piezoelectric materials, their characteristics and applications. The author uses simple language to explain the theory of piezoelectricity and introduce readers to the properties and design of different types of piezoelectric materials, such as those used in engineering and medical device applications. This book: Introduces various types of dielectrics and their classification based on their characteristics Addresses the mathematical formulation of piezoelectric effects and the definition of various piezoelectric constants Describes the structure and properties of practical piezoelectric materials such as quartz, lead zirconate titanate, barium titanate, zinc oxide, and polyvinylidene fluoride Covers the entire gamut of piezoelectric devices used in engineering and medical applications Discusses briefly the use of piezoelectric materials for energy harvesting and structural health monitoring Explores new developments in biomedical applications of piezoelectric devices such as drug delivery, blood flow and blood pressure monitoring, robotic operating tools, etc. Elaborates on design and virtual prototyping of piezoelectric devices through the use of FE software tools ANSYS and PAFEC Giving design engineers, scientists, and technologists the information and guidance they will need to adopt piezoelectric materials in the development of smart devices, this book will also motivate engineering and science students to initiate new research for developing innovative devices. Its contents will be invaluable to both students and professionals seeking a greater understanding of fundamentals and applications in the evolving field of piezoelectrics.
III-V semiconductors have attracted considerable attention due to their applications in the fabrication of electronic and optoelectronic devices as light-emitting diodes and solar cells. Because of their wide applications in a variety of devices, the search for new semiconductor materials and the improvement of existing materials is an important field of study. This new book covers all known information about phase relations in ternary systems based on III-V semiconductors. This book will be of interest to undergraduate and graduate students studying materials science, solid state chemistry, and engineering. It will also be relevant for researchers at industrial and national laboratories, in addition to phase diagram researchers, inorganic chemists, and solid state physicists.
In recent years the availability of techniques and the asking of basic and technological questions has led to an international explosion of activity in the study of solid surfaces. Originally published in Reports in Progress in Physics, Electronic Properties of Surfaces reflects the modern knowledge in this field, presenting critical appraisals of progress in surface science. The book should be particularly valuable for researchers new to this field.
This book aims to capture recent advances and breakthroughs in in-home radar monitoring of human motions and activities. It addresses three key attributes of radar for in-door human monitoring, namely: motion classification including fall, detection of vital signs, and categorization of human gait for risk assessment and progression of physical impairments and disabilities. It explores recent developments in radar technology for human monitoring inside homes and residences. The reader will learn enhanced detection and classification techniques of radar signals associated with human micro- and macro-motions. Furthermore, the book includes examples using real data collected from healthy individuals, patients, and retirement communities based on the subject Doppler and range information, and using different single and multi-antenna radar system configurations. Results are also presented using modeled data based on biomechanics and kinematics. Indoor monitoring is further demonstrated using alternative technologies of infrared sensors and RF signals of opportunities. |
You may like...
|