![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Microwave technology
This book provides a comprehensive introduction into photonics, from the electrodynamic and quantum mechanic fundamentals to the level of photonic components and building blocks such as lasers, amplifiers, modulators, waveguides, and detectors.The book will serve both as textbook and as a reference work for the advanced student or scientist. Theoretical results are derived from basic principles with convenient, yet state-of-the-art mathematical tools, providing not only deeper understanding but also familiarization with formalisms used in the relevant technical literature and research articles. Among the subject matters treated are polarization optics, pulse and beam propagation, waveguides, light-matter interaction, stationary and transient behavior of lasers, semiconductor optics and lasers (including low-dimensional systems such as quantum wells), detector technology, photometry, and colorimetry. Nonlinear optics are elaborated comprehensively.The book is intended for both students of physics and electronics and scientists and engineers in fields such as laser technology, optical communications, laser materials processing, and medical laser applications who wish to gain an in-depth understanding of photonics.
A comprehensive device model considering both spatial distributions of the terahertz field and the field-effect self-mixing factor has been constructed for the first time in the thesis. The author has found that it is the strongly localized terahertz field induced in a small fraction of the gated electron channel that plays an important role in the high responsivity. An AlGaN/GaN-based high-electron-mobility transistor with a 2-micron-sized gate and integrated dipole antennas has been developed and can offer a noise-equivalent power as low as 40 pW/Hz1/2 at 900 GHz. By further reducing the gate length down to 0.2 micron, a noise-equivalent power of 6 pW/Hz1/2 has been achieved. This thesis provides detailed experimental techniques and device simulation for revealing the self-mixing mechanism including a scanning probe technique for evaluating the effectiveness of terahertz antennas. As such, the thesis could be served as a valuable introduction towards further development of high-sensitivity field-effect terahertz detectors for practical applications.
Microwave and radio frequency (RF) elements play an important role in communication systems, and, due to the proliferation of radar, satellite and mobile wireless systems, there is a need for the study of electromagnetism. Each of the nine chapters of this book provides a complete analysis and modeling of the microwave structure used for emission or reception technology, providing students with a set of approaches that can be used for current and future RF and microwave circuit designs. The authors emphasize the practical nature of the subject by summarizing the analysis steps and giving numerous examples of problems and exercises complete with solutions, making this book theoretical, but also experimental, with over 16 microwave problems. This approach has produced a coherent and practical treatment of the subject. The book has grown out of the authors own teaching and, as such, has a unity of methodology and style. It provides basic knowledge of microwave and RF range and is intended for microwave engineers and for advanced graduate students.
The history of information and communications technologies (ICT) has been paved by both evolutive paths and challenging alternatives, so-called emerging devices and architectures. Their introduction poses the issues of state variable definition, information processing, and process integration in 2D, above IC, and in 3D. This book reviews the capabilities of integrated nanosystems to match low power and high performance either by hybrid and heterogeneous CMOS in 2D/3D or by emerging devices for alternative sensing, actuating, data storage, and processing. The choice of future ICTs will need to take into account not only their energy efficiency but also their sustainability in the global ecosystem.
This book systematically introduces readers to laser imaging target detection principles and techniques. It covers the fundamentals of laser imaging and presents an extensive, up-to-date analysis of how to best use laser imaging to detect targets. This is followed by a comprehensive discussion of laser imaging target detection principles, laser imaging generation, and target detection methods. The book offers an invaluable resource for researchers, especially those who are engaged in the fields including target detection based on a laser imaging system, target detection and identification, remote sensing imaging and image processing. Additionally, it can be used as a reference book for advanced undergraduates and postgraduates of relevant majors.
Magnonics, a research field that uses spin waves, collective excitations of ordered magnetic materials, or magnons (their quanta) as a tool for signal processing, communication, and computation, has rapidly grown during the past decade because of the low-energy consumption and potential compatibility with next-generation circuits beyond CMOS electronics. The interest in 3D magnonic nanostructures follows the latest trend in conventional electronics based on expansion from 2D planar to 3D vertically integrated structures. To remain on the same technological level, a similar expansion should be realized in magnonics. Following this trend, this book provides an overview of recent developments in the exploitation of the third dimension in magnonics, with special focus on the propagation of spin waves in layered magnonic crystals, spin textures, curved surfaces, 3D nano-objects, and cavity magnonics.
Electrical Engineering High-Power Microwave Sources and Technologies A volume in the IEEE Press Series on RF and Microwave Technology Roger D. Pollard and Richard Booton, Series Editors Written by a prolific group of leading researchers, High-Power Microwave Sources and Technologies focuses primarily on the high-power microwave (HPM) technology most appropriate for military applications. It highlights the advances achieved from 1995 to 2000 as the result of a US Department of Defense (DoD) funded, $15 million Multidisciplinary University Research Initiative (MURI) program. The grant created a synergy between researchers in the DoD laboratories and the academic community, and established links with the microwave vacuum electronics industry, which has led to unprecedented collaborations that transcend laboratory and disciplinary boundaries. This essential reference provides the history, state-of-the-art, and possible future of HPM source research and technologies. The first alternative to the multiplicity of detailed applications-based HPM books and journal articles, this book familiarizes the reader with recent advances in this rapidly changing field. It presents a compendium of valuable information on HPM sources, representing significant enabling technologies, including beam and rf control, cathodes, windows, and computational techniques. The era of utilizing computational techniques to electronically design an HPM source prior to actually building the hardware has arrived. Gain insight into proven techniques and solutions that will enhance your source design. High-Power Microwave Sources and Technologies is an invaluable resource to researchers active in the field, faculty, graduateand post-graduate students. Special Note: All royalties realized from the sale of this book will fund the future research and publications activities of graduate students in the HPM field.
This book traces the evolution of our understanding and utilization of light from classical antiquity and the early thoughts of Pythagoras to the present time. From the earliest recorded theories and experiments to the latest applications in photonic communication and computation, the ways in which light has been put to use are numerous and astounding. Indeed, some of the latest advances in light science are in fields that until recently belonged to the realm of science fiction. The author, writing for an audience of both students and other scientifically interested readers, describes fundamental investigations of the nature of light and ongoing methods to measure its speed as well as the emergence of the wave theory of light and the complementary photon theory. The importance of light in the theory of relativity is discussed as is the development of electrically-driven light sources and lasers. The information here covers the range o f weak single-photon light sources to super-high power lasers and synchrotron light sources. Many cutting-edge topics are also introduced, including entanglement-based quantum communication through optical fibers and free space, quantum teleportation, and quantum computing. The nature and use of "squeezed light" - e.g. for gravitational wave detection - is another fascinating excursion, as is the topic of fabricated metamaterials, as used to create invisibility cloaks. Here the reader also learns about the realization of extremely slow speed and time-reversed light. The theories, experiments, and applications described in this book are, whenever possible, derived from original references. The many annotated drawings and level of detail make clear the goals, procedures, and conclusions of the original investigators. Where they are required, all specialist terms and mathematical symbols are defined and explained. The final part of the book covers light expe riments in the free space of the cosmos, and also speculates about scenarios for the cosmological origins of light and the expected fate of the photon in a dying universe.
This book presents the latest developments in packaging for high-frequency electronics. It is a companion volume to "RF and Microwave Microelectronics Packaging" (2010) and covers the latest developments in thermal management, electrical/RF/thermal-mechanical designs and simulations, packaging and processing methods, and other RF and microwave packaging topics. Chapters provide detailed coverage of phased arrays, T/R modules, 3D transitions, high thermal conductivity materials, carbon nanotubes and graphene advanced materials, and chip size packaging for RF MEMS. It appeals to practicing engineers in the electronic packaging and high-frequency electronics domain, and to academic researchers interested in understanding the leading issues in the commercial sector. It is also a good reference and self-studying guide for students seeking future employment in consumer electronics.
This landmark monograph presents the most recent mathematical developments in the analysis of ionospheric distortions of SAR images and offers innovative new strategies for their mitigation. As a prerequisite to addressing these topics, the book also discusses the radar ambiguity theory as it applies to synthetic aperture imaging and the propagation of radio waves through the ionospheric plasma, including the anisotropic and turbulent cases. In addition, it covers a host of related subjects, such as the mathematical modeling of extended radar targets (as opposed to point-wise targets) and the scattering of radio waves off those targets, as well as the theoretical analysis of the start-stop approximation, which is used routinely in SAR signal processing but often without proper justification. The mathematics in this volume is clean and rigorous - no assumptions are hidden or ambiguously stated. The resulting work is truly interdisciplinary, providing both a comprehensive and thorough exposition of the field, as well as an accurate account of a range of relevant physical processes and phenomena. The book is intended for applied mathematicians interested in the area of radar imaging or, more generally, remote sensing, as well as physicists and electrical/electronic engineers who develop/operate spaceborne SAR sensors and perform the data processing. The methods in the book are also useful for researchers and practitioners working on other types of imaging. Moreover, the book is accessible to graduate students in applied mathematics, physics, engineering, and related disciplines. Praise for Transionospheric Synthetic Aperture Imaging: "I perceive that this text will mark a turning point in the field of synthetic aperture radar research and practice. I believe this text will instigate a new era of more rigorous image formation relieving the research, development and practitioner communities of inconsistent physical assumptions and numerical approaches." - Richard Albanese, Senior Scientist, Albanese Defense and Energy Development LLC
This book presents recent theoretical and experimental results of localized optical modes and low-threshold lasing in spiral photonic media. Efficient applications of localized modes for low-threshold lasing at the frequencies of localized modes are a central topic of the book's new chapters. Attention is paid to the analytical approach to the problem. The book focuses on one of the most extensively studied media in this field, cholesteric liquid crystals. The chosen model, in the absence of dielectric interfaces, allows to remove the problem of polarization mixing at surfaces, layers and defect structures. It allows to reduce the corresponding equations to the equations for light of diffracting polarization only. The problem concentrates then on the edge and defect optical modes. The possibility to reduce the lasing threshold due to an anomalously strong absorption effect is presented theoretically for distributed feedback lasing. It is shown that a minimum of the threshold-pumping wave intensity can be reached for the pumping wave frequency coinciding with the localized mode frequency (what can be reached for a pumping wave propagating at a certain angle to the helical axes). Analytic expressions for transmission and reflection coefficients are presented. In the present second edition, experimental observations of theoretically revealed phenomena in spiral photonic media are discussed. The main results obtained for spiral media are qualitatively valid for photonic crystals of any nature and therefore may be applied as a guide to investigations of other photonic crystals where the corresponding theory is more complicated and demands a numerical approach. It is demonstrated that many optical phenomena occurring at the frequencies of localized modes reveal unusual properties which can be used for efficient applications of the corresponding phenomena, efficient frequency conversion and low threshold lasing, e.g. For the convenience of the reader, an introduction is given to conventional linear and nonlinear optics of structured periodic media. This book is valuable to researchers, postgraduate, and graduate students active in theoretical and experimental physics in the field of interaction of radiation with condensed matter.
This book displays the physics and design of high-power molecular lasers. The lasers described are self-controlled volume-discharge lasers. The book explains self-sustained discharge lasers, self-initiated discharge lasers and technical approaches to laser design. Important topics discussed are laser efficiency, laser beam quality and electric field homogeneity. The book contains many new innovative applications.
The Third Edition of Ceramic Materials for Electronics studies a wide range of ceramic materials, including insulators, conductors, piezoelectrics, and ferroelectrics, through detailed discussion of their properties, characterization, fabrication, and applications in electronics. The author summarizes the latest trends and advancements in the field, and explores important topics such as ceramic thin film, functional device technology, and thick film technology. Edited by a leading expert on the subject, this new edition includes more than 150 pages of new information; restructured reference materials, figures, and tables; as well as additional device application-oriented segments.
A comprehensive, self-contained text/reference for practical problem solving Fundamentals of Microwave Transmission Lines Invaluable as a self-study text and reference source for both professional engineers and engineering students, Fundamentals of Microwave Transmission Lines is the complete guide to solving microwave transmission problems. Its easy-to-use, self-study format facilitates mastery of the underlying physics and mathematics of the phenomena. One hundred and twenty-six completely solved example problems, which range from simple exercises to descriptive design procedures, expand and clarify solutions to problems often encountered on the job. And, since transmission lines lie at the core of distributed circuit analysis and microwave circuit design, this book's thorough coverage of the material will serve the reader well in related projects in eletromagnetics. Major topics include: Introduction to Distributed Circuits Mathematics of Traveling Waves Coupled Lines Time Domain Topics Sinusoidal Steady State The Smith Chart Single Frequency Matching
Delay- and Disruption Tolerant Networks (DTNs) are networks subject to arbitrarily long-lived disruptions in connectivity and therefore cannot guarantee end-to-end connectivity at all times. Consequently DTNs called for novel core networking protocols since most existing Internet protocols rely on the network's ability to maintain end-to-end communication between participating nodes. This book presents the fundamental principles that underline DTNs. It explains the state-of-the-art on DTNs, their architecture, protocols, and applications. It also explores DTN's future technological trends and applications. Its main goal is to serve as a reference for researchers and practitioners.
This textbook employs a pedagogical approach that facilitates access to the fundamentals of Quantum Photonics. It contains an introductory description of the quantum properties of photons through the second quantization of the electromagnetic field, introducing stimulated and spontaneous emission of photons at the quantum level. Schroedinger's equation is used to describe the behavior of electrons in a one-dimensional potential. Tunneling through a barrier is used to introduce the concept of non locality of an electron at the quantum level, which is closely-related to quantum confinement tunneling, resonant tunneling, and the origin of energy bands in both periodic (crystalline) and aperiodic (non-crystalline) materials. Introducing the concepts of reciprocal space, Brillouin zones, and Bloch's theorem, the determination of electronic band structure using the pseudopotential method is presented, allowing direct computation of the band structures of most group IV, group III-V, and group II-VI semiconductors. The text is supported by numerous numerical calculations that can be repeated by the student. The book includes an extensive treatment of the time duration of tunneling. The non-local nature of quantum mechanical states is further developed by the proof of Bell's theorem and an in-depth discussion of its implications for experimental phenomena like quantum tunneling and quantum entanglement. The entangled quantum photon pair is the workhorse for exploring the fundamental non-locality of quantum mechanics, as well as important applications such as quantum cryptography. Further, the book presents the generation of entangled photon pairs by spontaneous parametric downconversion in detail using operators of the quantized photonic field. The physics of laser action is presented using the quantum photonic basis of spontaneous and stimulated emission, highlighting the limits of Maxwell's equations in describing quantum behavior. Further, the book shows how the quantum confinement of electrons leads to reduced threshold current on the macroscopic level. Quantum cascade and interband cascade laser structures are analyzed using methods developed in earlier chapters to show how band structure engineering can be applied to access photon emission energies that cannot be achieved using conventional materials.
This book provides electrical and electronic engineering undergraduate and graduate students and trainees with practical information on grounding-system parameters, and on different methods for measuring soil resistivity and ground resistance. It also presents some real-world studies, which enhance the learning experience. It discusses electromagnetic field theories to explain ground resistance modeling using different sizes of electrodes. Furthermore it includes CYME GRD software for simulation of soil resistivity and grounding grid design, and considers some fundamental concepts of power systems to clarify other topics related to the grounding system.
This textbook provides an introductory presentation of all types of lasers. It contains a general description of the laser, a theoretical treatment and a characterization of its operation as it deals with gas, solid state, free-electron and semiconductor lasers. This expanded and updated second edition of the book presents a description of the dynamics of free-electron laser oscillation using a model introduced in the first edition that allows a reader to understand basic properties of a free-electron laser and makes the difference to "conventional" lasers. The discussions and the treatment of equations are presented in a way that a reader can immediately follow. The book addresses graduate and undergraduate students in science and engineering, featuring problems with solutions and over 400 illustrations.
This book describes the newest implementations of integrated photodiodes fabricated in nanometer standard CMOS technologies. It also includes the required fundamentals, the state-of-the-art, and the design of high-performance laser drivers, transimpedance amplifiers, equalizers, and limiting amplifiers fabricated in nanometer CMOS technologies. This book shows the newest results for the performance of integrated optical receivers, laser drivers, modulator drivers and optical sensors in nanometer standard CMOS technologies. Nanometer CMOS technologies rapidly advanced, enabling the implementation of integrated optical receivers for high data rates of several Giga-bits per second and of high-pixel count optical imagers and sensors. In particular, low cost silicon CMOS optoelectronic integrated circuits became very attractive because they can be extensively applied to short-distance optical communications, such as local area network, chip-to-chip and board-to-board interconnects as well as to imaging and medical sensors.
This book covers the main physical mechanisms and the different contributions (1/f noise, shot noise, etc.) behind electronic fluctuations in various spintronic devices. It presents the first comprehensive summary of fundamental noise mechanisms in both electronic and spintronic devices and is therefore unique in that aspect. The pedagogic introduction to noise is complemented by a detailed description of how one could set up a noise measurement experiment in the lab. A further extensive description of the recent progress in understanding and controlling noise in spintronics, including the boom in 2D devices, molecular spintronics, and field sensing, is accompanied by both numerous bibliography references and tens of case studies on the fundamental aspects of noise and on some important qualitative steps to understand noise in spintronics. Moreover, a detailed discussion of unsolved problems and outlook make it an essential textbook for scientists and students desiring to exploit the information hidden in noise in both spintronics and conventional electronics.
This book is volume III of a series of books on silicon photonics. It reports on the development of fully integrated systems where many different photonics component are integrated together to build complex circuits. This is the demonstration of the fully potentiality of silicon photonics. It contains a number of chapters written by engineers and scientists of the main companies, research centers and universities active in the field. It can be of use for all those persons interested to know the potentialities and the recent applications of silicon photonics both in microelectronics, telecommunication and consumer electronics market.
This collection of the selected papers presented to the Second International Conference on Photonics, Optics and laser technology PHOTOPTICS 2014 covers the three main conference scientific areas of "Optics", "Photonics" and "Lasers". The selected papers, in two classes full and short, result from a double blind review carried out by conference Program Committee members who are highly qualified experts in the conference topic areas.
Heterostructured nanoparticles have the capability for a broad range of novel and enhanced properties, which leads to appealing biomedical and environmental applications. This timely new book addresses the design and preparation of multiphase nanomaterials with desired size, shape, phase composition, and crystallinity, as well as their current applications. It emphasizes key examples to motivate deeper studies, including nanomaterial-based hyperthermia treatment of cancer, nanohybrids for water purification, nanostructures used in the removal or detection of bioagents from waste water, and so on. Features Presents state of the art research on heterostructured nanomaterials, from their synthesis and physiochemical properties to current environmental and biological applications. Includes details on toxicity and risk assessment of multifunctional nanomaterials. Discusses recent developments and utilization in healthcare by leading experts. Introduces the main features of functionalization of nanomaterials in terms of desired size, shape, phase composition, surface functionalization/coating, toxicity, and geometry. Emphasizes practical applications in the environmental and biomedical sectors.
This unique book contains all topics of importance to the analog designer which are essential to obtain sufficient insights to do a thorough job. The book starts with elementary stages in building up operational amplifiers. The synthesis of opamps is covered in great detail. Many examples are included, operating at low supply voltages. Chapters on noise, distortion, filters, ADC/DACs and oscillators follow. These are all based on the extensive amount of teaching that the author has carried out world-wide.
This book provides a solid overview of mobile phone programming for readers in both academia and industry. Coverage includes all commercial realizations of the Symbian, Windows Mobile and Linux platforms. The text introduces each programming language (JAVA, Python, C/C++) and offers a set of development environments "step by step," to help familiarize developers with limitations, pitfalls, and challenges. |
![]() ![]() You may like...
Ionic Liquids - From Knowledge to…
Natalia Plechkova, Robin Rogers, …
Hardcover
R3,497
Discovery Miles 34 970
Minecraft: Blockopedia - Updated Edition
Mojang AB, The Official Minecraft Team
Hardcover
Semi-Markov Processes and Reliability
N. Limnios, G. Oprisan
Hardcover
R2,909
Discovery Miles 29 090
|