![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Microwave technology
This book highlights cutting-edge topics in contemporary physics, discussing exciting advances and new forms of thinking in evolving fields with emphases both on natural phenomena and applications to modern engineering. It provides material for thought and practice in nanophysics, plasma physics, and electrodynamics. Nanophysics and plasmas are synergic physical areas where the whole is more than the sum of the parts (quantum, atomic and molecular, electrodynamics, photonics, condensed matter, thermodynamics, transport phenomena). The authors emphasize both fundamentals and more complex concepts, making the contents accessible as well challenging. Nanoscale properties and physical phenomena are explained under the umbrella of quantum physics. Advances made in the physical knowledge of the nanoworld, and its metrology are addressed, along with experimental achievements which have furthered studies of extreme weak forces present at nano- or sub-micron scales. The book does not focus in detail on the diversity of applications in nanotechnology and instrumentation, considering that the reader already has basic prior knowledge on that. It also covers an introduction to plasma universe phenomenology, the basics of advanced mathematics applied to the electromagnetic field, longitudinal forces in the vacuum, concepts of helicity and topological torsion, SU(2) representation of Maxwell equations, 2D representation of the electromagnetic field, the use of the fractional derivative, and ergontropic dynamics. The chapters include theory, applications, bibliographic references, and solved exercises. The synergies of the book's topics demonstrate their potential in critical issues, such as relieving humans from barriers imposed by energetic and entropic dependencies and penetrating the realm of weak forces at the nanoscale. The book will boost both post-graduate students and mature scientists to implement new scientific and technological projects.
Institutional book, not really for bookstore catalogue The book contains valuable information structured to provide insight on how to design SC sigma-delta modulators. It presents architectures, circuits, models, methods and practical considerations for the design of high-performance low-pass switched-capacitor (SC) sigma-delta A/D interfaces for mixed-signal CMOS ASICs. The main focus of the book is on cascade architectures. It differs from other books in the complete, in-depth coverage of SC circuit errors.
Today's wireless services have come a long way since the roll out of the conventional voice-centric cellular systems. The demand for wireless access in voice and high rate data multi-media applications has been increasing. New generation wireless communication systems are aimed at accommodating this demand through better resource management and improved transmission technologies. This book discusses the cognitive radio, software defined radio, and adaptive radio concepts from several perspectives.
Khaled Fazel Stefan Kaiser Radio System Design DoCoMo Euro-Labs Marconi Communications Landsberger Strasse 312 D-71522 Backnang, Germany D-80687 Munich, Germany The field of multi-carrier and spread spectrum communications has became an important research topic with increasing number of research activities [1]. Especially in the last two years, beside deep system analysis of various multiple access schemes, new standardization activities in the framework of beyond 3G (B3G) concepts have been initiated. Multi-carrier transmission is considered to be a potential candidate to fulfil the requirements of the next generation system. The two important requirements of B3G/4G can be summarized as: i) much higher data rate for cellular mobile radio and ii) a unique physical layer specification for indoor/hot spot and outdoor/cellular applications, including fixed wireless access (FWA) schemes. The activities within the 3GPP and WiMAX fora are examples of such trends (see Fig. 1). IEEE 802 ETSI WAN UMTS, EDGE 3GPP (GSM) HiperMAN & IEEE 802. 16 WiMAX MAN HiperAccess WirelessMAN HiperLAN/2 IEEE 802. 11 LAN WiFi RLAN WirelessLAN IEEE 802. 15 PAN Bluetooth BRAN Figure 1 Beyond 3G: Worldwide Standardization Activities xii Editorial Introduction The WiMAX (Worldwide Interoperability for Microwave Access [2]) vision is to provide broadband wireless access with its primary goal to promote IEEE 802. 16a-e and ETSI-BRAN standards through interoperability testing and certification. In the first step the broadband access to the so-called last mile applications with fixed positioned terminals is envisaged.
Michael Hrobak studied hybrid integrated front end modules for high frequency measurement equipment and especially for synthetic automatic test systems. Recent developments of innovative, critical millimeter-wave components like frequency multipliers, directional couplers, filters, triple balanced mixers and power detectors are illustrated by the author separately and in combination.
High-Frequency Characterization of Electronic Packaging will be of interest to researchers and designers of high-frequency electronic packaging. Understanding high-frequency behavior of packaging is of growing importance due to higher clock-speeds in computers and higher data transmission rates in broadband telecommunication systems. Basic knowledge of the high-frequency behavior of packaging and interconnects is, therefore, indispensable for the design of future telecommunication and computer systems. High-Frequency Characterization of Electronic Packaging gives the reader an insight into how high-frequency characterization of electronic packaging should be done and describes the problems that have to be tackled, especially in performing accurate measurements on modern IC-packages and in determination of circuit models. High-Frequency Characterization of Electronic Packaging is conceived as a comprehensive guide for the start of research and to help in performing high-frequency measurements. Important notions in high- frequency characterization such as S-parameters, calibration, probing, de-embedding and measurement-based modeling are explained. The described techniques are illustrated with several up-to-date examples.
This book advocates the idea of breaking up the cellular communication architecture by introducing cooperative strategies among wireless devices through cognitive wireless networking. It details the cooperative and cognitive aspects for future wireless communication networks. Coverage includes social and biological inspired behavior applied to wireless networks, peer-to-peer networking, cooperative networks, and spectrum sensing and management.
This book provides a comprehensive introduction to video traces and their use in networking research. After first providing the basics of digital video and video coding, the book introduces video traces, covering the metrics captured in the traces, the trace generation, as well as the statistical characteristics of the video characterized in the traces.
As technology matures, communication system operation regions shift from mic- wave and millimeter ranges to sub-millimeter ranges. However, device perf- mance at very high frequencies suffers drastically from the material de?ciencies. As a result, engineers and scientists are relentlessly in search for the new types of materials, and composites which will meet the device performance requirements and not present any de?ciencies due to material electrical and magnetic properties. Anisotropic and gyrotropic materials are the class of the materials which are very important in the development high performance microwave devices and new types composite layered structures. As a result, it is a need to understand the wave propagation and radiation characteristics of these materials to be able to realize them in practice. This book is intended to provide engineers and scientists the required skill set to design high frequency devices using anisotropic, and gyrotropic materials by providing them the theoretical background which is blended with the real world engineering application examples. It is the author's hope that this book will help to ?ll the gap in the area of applied electromagnetics for the design of microwave and millimeter wave devices using new types of materials. Each chapter in the book is designed to give the theory ?rst on the subject and solidify it with application examples given in the last chapter. The application examples for the radiation problems are given at the end of Chap. 5 and Chap. 6 for anisotropic and gyrotropic materials, respectively, after the theory section.
The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science and optical science which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield as well as graduate students can grasp the importance and attractions of the research topic at hand. These are followed by reports of cutting-edge discoveries. This eighth volume covers a broad range of topics from this interdisciplinary research field, focusing on molecules interacting with ultrashort and intense laser fields, advanced technologies for the characterization of ultrashort laser pulses and their applications, laser plasma formation and laser acceleration.
A detailed study of the science, engineering and applications of terahertz technology, based on room-temperature solid-state devices, which are seen as the key technology for wider applications in this frequency range. The relative merits of electronic and optical devices are discussed and new device principles identified. Issues of terahertz circuit design, implementation and measurement are complemented by chapters on current and future applications in communications, sensing and remote surveillance. Audience: The unique coverage of all aspects of terahertz technology will appeal to both new and established workers in the field, as well as providing a survey for the interested reader.
In order to adapt to the ever-increasing demands of telecommunication needs, today's network operators are implementing 100 Gb/s per dense wavelength division multiplexing (DWDM) channel transmission. At those data rates, the performance of fiberoptic communication systems is degraded significantly due to intra- and inter-channel fiber nonlinearities, polarization-mode dispersion (PMD), and chromatic dispersion. In order to deal with those channel impairments, novel advanced techniques in modulation and detection, coding and signal processing are needed. This unique book represents a coherent and comprehensive introduction to the fundamentals of optical communications, signal processing and coding for optical channels. It is the first to integrate the fundamentals of coding theory with the fundamentals of optical communication.
Low Power Consumption is one of the critical issues in the performance of small battery-powered handheld devices. Mobile terminals feature an ever increasing number of wireless communication alternatives including GPS, Bluetooth, GSM, 3G, WiFi or DVB-H. Considering that the total power available for each terminal is limited by the relatively slow increase in battery performance expected in the near future, the need for efficient circuits is now critical. This book presents the basic techniques available to design low power RF CMOS analogue circuits. It gives circuit designers a complete guide of alternatives to optimize power consumption and explains the application of these rules in the most common RF building blocks: LNA, mixers and PLLs. It is set out using practical examples and offers a unique perspective as it targets designers working within the standard CMOS process and all the limitations inherent in these technologies.
Next generation optical communication systems will have to transport a significantly increased data volume at a reduced cost per transmitted bit. To achieve these ambitious goals optimum design is crucial in combination with dynamic adaptation to actual traffic demands and improved energy efficiency. In the first part of the book the author elaborates on the design of optical transmission systems. Several methods for efficient numerical simulation are presented ranging from meta-model based optimization to parallelization techniques for solving the nonlinear Schroedinger equation. Furthermore, fast analytical and semi-analytical models are described to estimate the various degradation effects occurring on the transmission line. In the second part of the book operational aspects of optical networks are investigated. Physical layer impairment-aware routing and regenerator placement are studied. Finally, it is analyzed how the energy efficiency of a multi-layer optical core network can be increased by dynamic adaptation to traffic patterns changing in the course of the day.
Everybody is current in a world surrounded by computer. Computers determine our professional activity and penetrate increasingly deeper into our everyday life. Therein we also need increasingly refined c- puter technology. Sometimes we think that the next generation of c- puter will satisfy all our dreams, giving us hope that most of our urgent problems will be solved very soon. However, the future comes and il- sions dissipate. This phenomenon occurs and vanishes sporadically, and, possibly, is a fundamental law of our life. Experience shows that indeed 'systematically remaining' problems are mainly of a complex tech- logical nature (the creation of new generation of especially perfect - croschemes, elements of memory, etc. ). But let us note that amongst these problems there are always ones solved by our purely intellectual efforts alone. Progress in this direction does not require the invention of any 'superchip' or other similar elements. It is important to note that the results obtained in this way very often turn out to be more significant than the 'fruits' of relevant technological progress. The hierarchical asymptotic analytical-numerical methods can be - garded as results of such 'purely intellectual efforts'. Their application allows us to simplify essentially computer calculational procedures and, consequently, to reduce the calculational time required. It is obvious that this circumstance is very attractive to any computer user.
Microwave Integrated Circuits provides a comprehensive overview of analysis and design methods for integrated circuits and devices in microwave systems. Passive and active devices, and linear and non-linear circuits are covered with a final chapter detailing measurement and test techniques.
This volume contains the proceedings of the first ICASE/LaRC Work shop on Computational Electromagnetics and Its Applications conducted by the Institute for Computer Applications in Science and Engineering and NASA Langley Research Center. We had several goals in mind when we decided, jointly with the Elec tromagnetics Research Branch, to organize this workshop on Computa tional Electromagnetics ( CEM). Among our goals were a desire to obtain an overview of the current state of CEM, covering both algorithms and ap plications and their effect on NASA's activities in this area. In addition, we wanted to provide an attractive setting for computational scientists with expertise in other fields, especially computational fluid dynamics (CFD), to observe the algorithms and tools of CEM at work. Our expectation was that scientists from both fields would discover mutually beneficial inter connections and relationships. Another goal was to learn of progress in solution algorithms for electromagnetic optimization and design problems; such problems make extensive use of field solvers and computational effi ciency is at a premium. To achieve these goals we assembled the renowned group of speakers from academia and industry whose talks are contained in this volume. The papers are printed in the same order in which the talks were pre sented at the meeting. The first paper is an overview of work currently being performed in the Electromagnetic Research Branch at the Langley Research Center."
In the past decade, there has been a burst of new and fascinating physics associated to the unique properties of two-dimensional exciton polaritons, their recent demonstration of condensation under non-equilibrium conditions and all the related quantum phenomena, which have stimulated extensive research work. This monograph summarizes the current state of the art of research on exciton polaritons in microcavities: their interactions, fast dynamics, spin-dependent phenomena, temporal and spatial coherence, condensation under non-equilibrium conditions, related collective quantum phenomena and most advanced applications. The monograph is written by the most active authors who have strongly contributed to the advances in this area. It is of great interests to both physicists approaching this subject for the first time, as well as a wide audience of experts in other disciplines who want to be updated on this fast moving field.
Analog Circuit Design contains the contribution of 18 tutorials of the 20th workshop on Advances in Analog Circuit Design. Each part discusses a specific to-date topic on new and valuable design ideas in the area of analog circuit design. Each part is presented by six experts in that field and state of the art information is shared and overviewed. This book is number 20 in this successful series of Analog Circuit Design, providing valuable information and excellent overviews of: Topic 1 : Low Voltage Low Power, chairman: Andrea Baschirotto Topic 2 : Short Range Wireless Front-Ends, chairman: Arthur van Roermund Topic 3 : Power Management and DC-DC, chairman : Michiel Steyaert. Analog Circuit Design is an essential reference source for analog circuit designers and researchers wishing to keep abreast with the latest development in the field. The tutorial coverage also makes it suitable for use in an advanced design course.
Today's wireless communications and information systems are heavily based on microwave technology. Current trends indicate that in the future along with - crowaves, the millimeter wave and Terahertz technologies will be used to meet the growing bandwidth and overall performance requirements. Moreover, motivated by the needs of the society, new industry sectors are gaining ground; such as wi- less sensor networks, safety and security systems, automotive, medical, envir- mental/food monitoring, radio tags etc. Furthermore, the progress and the pr- lems in the modern society indicate that in the future these systems have to be more user/consumer friendly, i. e. adaptable, reconfigurable and cost effective. The mobile phone is a typical example which today is much more than just a phone; it includes a range of new functionalities such as Internet, GPS, TV, etc. To handle, in a cost effective way, all available and new future standards, the growing n- ber of the channels and bandwidth both the mobile handsets and the associated systems have to be agile (adaptable/reconfigurable). The complex societal needs have initiated considerable activities in the field of cognitive and software defined radios and triggered extensive research in adequate components and technology platforms. To meet the stringent requirements of these systems, especially in ag- ity and cost, new components with enhanced performances and new functionalities are needed. In this sense the components based on ferroelectrics have greater - tential and already are gaining ground.
The Advanced Study Institute on "Theoretical Aspects and New Developments in Magneto-Optics" was held at the University of Antwerpen (R.U.C.A.), from July 16 to July 28, 1979. The Institute was sponsored by NATO. Co-sponsors were: Agfa-Gevaert (Belgium), A.S.L.K. (Belgium), Bell Telephone Mfg. CO. (Belgium), Esso Belgium, Generale Bankmaatschappij (Belgium), General Motors (Belgium), I.B.M. (Belgium), Kredietbank (Belgium), Metallurgie Hoboken-Over pelt (Belgium), National Science Foundation (U.S.A). A total of 60 lecturers and participants attended the Institute. Scope of the Institute The magneto-optic phenomena are due to the change of the polarizability of a substance as a result of the splitting of the quantized energy bands. Most of these phenomena were discovered during the second half of this century. The understanding of the magneto-optical effects of all kinds, however, was brought by the advent of quantum mechanics, and since then important progress has been made in many fields of experimental methods and techniques.
The purpose of the package is to answer the question 'What is the radio field strength at a certain point?' when power is radiated from a transmit ting source. Because of the complexity of the question in general, it can only be answered at present in certain idealized situations. Nevertheless it is valuable to have quantitative data available for these situations. The package is divided into two parts. In the first of these, propagation in free space and over a flat earth are dealt with. In the second, propagation over a spherical earth is considered. In the free-space situation the power density of the signal in a given direction will fall as the inverse square of the distance from the source. For propagation from a transmitting source at an arbitrary height above a perfecdy conducting flat earth, the field strength at large distances can be 3 dB higher than in free space. With a finite conduc tivity earth, the field strength will be lower than this because of the power dissipation in the earth.
Femtosecond laser micromachining of transparent material is a powerful and versatile technology. In fact, it can be applied to several materials. It is a maskless technology that allows rapid device prototyping, has intrinsic three-dimensional capabilities and can produce both photonic and microfluidic devices. For these reasons it is ideally suited for the fabrication of complex microsystems with unprecedented functionalities. The book is mainly focused on micromachining of transparent materials which, due to the nonlinear absorption mechanism of ultrashort pulses, allows unique three-dimensional capabilities and can be exploited for the fabrication of complex microsystems with unprecedented functionalities.This book presents an overview of the state of the art of this rapidly emerging topic with contributions from leading experts in the field, ranging from principles of nonlinear material modification to fabrication techniques and applications to photonics and optofluidics.
This book is dedicated to the adoption of broadband microwave reflectometry (BMR)-based methods for diagnostics and monitoring applications. This electromagnetic technique has established as a powerful tool for monitoring purposes; in fact, it can balance several contrasting requirements, such as the versatility of the system, low implementation cost, real-time response, possibility of remote control, reliability, and adequate measurement accuracy. Starting from an extensive survey of the state of the art and from a clear and concise overview of the theoretical background, throughout the book, the different approaches of BMR are considered (i.e., time domain reflectometry - TDR, frequency domain reflectometry - FDR, and the TDR/FDR combined approach) and several applications are thoroughly investigated. The applications considered herein are very diverse from each other and cover different fields. In all the described procedures and methods, the ultimate goal is to endow them with a significant performance enhancement in terms of measurement accuracy, low cost, versatility, and practical implementation possibility, so as to unlock the strong potential of BMR.
This book presents the theory, analysis, and design of ultra-wideband (UWB) radar and sensor systems (in short, UWB systems) and their components. UWB systems find numerous applications in the military, security, civilian, commercial and medicine fields. This book addresses five main topics of UWB systems: System Analysis, Transmitter Design, Receiver Design, Antenna Design and System Integration and Test. The developments of a practical UWB system and its components using microwave integrated circuits, as well as various measurements, are included in detail to demonstrate the theory, analysis and design technique. Essentially, this book will enable the reader to design their own UWB systems and components. In the System Analysis chapter, the UWB principle of operation as well as the power budget analysis and range resolution analysis are presented. In the UWB Transmitter Design chapter, the design, fabrication and measurement of impulse and monocycle pulse generators are covered. The UWB Receiver Design chapter addresses the design and measurement of the strobe pulse generator, sampling mixer, low-noise amplifier and synchronous sampling receiver. Next, the UWB Antenna Design chapter details the design and measurement of to two UWB antennas: the microstrip quasi-horn antenna and the UWB uniplanar antenna. The System Integration and Test chapter covers the transmission-reception test, signal processing, system integration, and evaluation of the UWB sensor. The final chapter provides a summary and conclusion of the work. |
You may like...
Einstein vs. Bergson - An Enduring…
Alessandra Campo, Simone Gozzano
Hardcover
R2,952
Discovery Miles 29 520
Self, No Self? - Perspectives from…
Mark Siderits, Evan Thompson, …
Hardcover
R2,271
Discovery Miles 22 710
Franz Brentano's Philosophy After One…
Denis Fisette, Guillaume Frechette, …
Hardcover
R3,379
Discovery Miles 33 790
Wittgenstein and Analytic Philosophy…
Hans-Johann Glock, John Hyman
Hardcover
R2,743
Discovery Miles 27 430
Reason, Metaphysics, and Mind - New…
Kelly James Clark, Michael Rea
Hardcover
R2,980
Discovery Miles 29 800
|