Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Microwave technology
This book presents innovative ideas and technical contributions in the area of metasurfaces and antenna technologies. On the one hand, it presents an effective method to analyze metasurfaces constituted by metallic texture with certain geometries. It shows how this method can be applied to the design of metasurface (MTS) antennas for deep space communications and other planar microwave devices. On the other hand, the book reports on a general methodology developed for analyzing flat devices realized by using modulated MTSs, which opens new design possibilities for a large number of microwave devices based on the manipulation of SWs. Finally, a novel approach of reconfigurability, which is based on a class of checkerboard MTS, is explored. All in all, this book covers important insights and significant results on the emerging topic of metasurfaces, from theoretical and computational aspects to experiments.
In two editions spanning more than a decade, "The Electrical Engineering Handbook" stands as the definitive reference to the multidisciplinary field of electrical engineering. Our knowledge continues to grow, and so does the Handbook. For the third edition, it has expanded into a set of six books carefully focused on a specialized area or field of study. Electronics, Power Electronics, Optoelectronics, Microwaves, Electromagnetics, and Radar represents a concise yet definitive collection of key concepts, models, and equations in these areas, thoughtfully gathered for convenient access. Electronics, Power Electronics, Optoelectronics, Microwaves, Electromagnetics, and Radar delves into the fields of electronics, integrated circuits, power electronics, optoelectronics, electromagnetics, light waves, and radar, supplying all of the basic information required for a deep understanding of each area. It also devotes a section to electrical effects and devices and explores the emerging fields of microlithography and power electronics. Articles include defining terms, references, and sources of further information. Encompassing the work of the world's foremost experts in their respective specialties, Electronics, Power Electronics, Optoelectronics, Microwaves, Electromagnetics, and Radar features the latest developments, the broadest scope of coverage, and new material in emerging areas.
This groundbreaking volume covers the significant advantages of wave technologies in the development of innovative machine building where high technologies with appreciable economic effect are applied. These technologies cover many industries, including the oil-and-gas industry, refining and other chemical processing, petrochemical industry, production of new materials, composite and nano-composites including, construction equipment, environmental protection, pharmacology, power generation, and many others. The technological problem of grinding, fine-scale grinding and activation of solid particles (dry blends) is disclosed. This task is common for the production of new materials across these various industries. At present in this sphere the traditional methods have reached their limits and in some cases are economically ineffective from both scientific and practical points of view. The authors have detailed, through their extensive groundbreaking research, how these new methods, based on wave technology, can be used to create new, more efficient and less expensive applications and materials for industry. From increasing oil recovery to building stronger machines more efficiently and creating more productive membrane separation devices, wave technology can be used as a fertile ground for product innovation and more efficient methods of production across a variety of industries. This book is the only one of its kind in the world and offers a unique and invaluable glance into this sophisticated and complicated scientific area that is only now being more fully utilized for its valuable benefits.
This book presents select and peer-reviewed proceedings of the International Conference on Smart Communication and Imaging Systems (MedCom 2020). The contents explore the recent technological advances in the field of next generation communication systems and latest techniques for image processing, analysis and their related applications. The topics include design and development of smart, secure and reliable future communication networks; satellite, radar and microwave techniques for intelligent communication. The book also covers methods and applications of GIS and remote sensing; medical image analysis and its applications in smart health. This book can be useful for students, researchers and professionals working in the field of communication systems and image processing.
Advancement of Optical Methods & Digital Image Correlation in Experimental Mechanics, Volume 4 of the Proceedings of the 2020 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the fourth volume of seven from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of optical methods ranging from traditional photoelasticity and interferometry to more recent DIC and DVC techniques, and includes papers in the following general technical research areas: DIC Methods & Its Applications Photoelsticity and Interferometry ApplicationsMicro-Optics and Microscopic SystemsMultiscale
This book introduces readers to the polarimetric synthetic aperture radar (PolSAR) system, its information processing, and imaging applications. The content is divided into three main parts: Part I, on the research scope of PolSAR, addresses the underlying theory and system design, polarimetric SAR interferometry (PolInSAR), compact PolSAR, and calibration of PolSAR. Part II, which focuses on information processing, highlights the new theories and methods used in PolSAR, such as statistical properties analysis for images, speckle reduction, image enhancement, polarimetric target decomposition, and classification of PolSAR target detection. In turn, Part III, on the applications of polarimetric SAR, discusses the geophysical parameter retrieval of PolSAR data, polarimetric interferometric SAR information processing, compact polarimetric interferometric SAR information processing, and the effects of terrain tilt in azimuth direction on PolSAR data. The book provides a comprehensive and systematic guide to the system, integrating theory and practice, and has a highly application-oriented focus. Presenting new theories, methods and achievements made in polarimetric microwave imaging in recent years, it offers a valuable asset for researchers, engineers and scientists in the area of remote sensing and radar imaging. It can also be used as a reference book for university educators and graduate students.
Applied Photometry, Radiometry, and Measurements of Optical Losses reviews and analyzes physical concepts of radiation transfer, providing quantitative foundation for the means of measurements of optical losses, which affect propagation and distribution of light waves in various media and in diverse optical systems and components. The comprehensive analysis of advanced methodologies for low-loss detection is outlined in comparison with the classic photometric and radiometric observations, having a broad range of techniques examined and summarized: from interferometric and calorimetric, resonator and polarization, phase-shift and ring-down decay, wavelength and frequency modulation to pulse separation and resonant, acousto-optic and emissive - subsequently compared to direct and balancing methods for studying free-space and polarization optics, fibers and waveguides. The material is focused on applying optical methods and procedures for evaluation of transparent, reflecting, scattering, absorbing, and aggregated objects, and for determination of power and energy parameters of radiation and color properties of light.
This book presents peer-reviewed articles from the International Conference on Optics and Electro-optics, ICOL-2019, held at Dehradun in India. It brings together leading researchers and professionals in the field of optics/optical engineering/optical materials and provides a platform to present and establish collaborations in this important area, with the theme "Trends in Electro-optics Instrumentation for Strategic Applications". Topics covered but not limited to are Optical Engineering, Optical Thin Films, Optical Materials, IR Sensors, Image Processing & Systems, Photonic Band Gap Materials, Adaptive Optics, Optical Image Processing & Holography, Lasers, Fiber Lasers & its Applications, Diffractive Optics, Innovative packaging of Optical Systems, Nanophotonics Devices and Applications, Optical Interferometry & Metrology, Terahertz, Millimeter Wave & Microwave Photonics, Fiber, Integrated & Nonlinear Optics and Optics and Electro-optics for Strategic Applications.
This book studies the vulnerability of wireless communications under line-of-sight (LoS) and non-LoS correlated fading environments. The authors theoretically and practically provide physical layer security analyses for several technologies and networks such as Fifth-Generation (5G) networks, Internet of Things (IoT) applications, and Non-orthogonal multiple access (NOMA). The authors have provided these under various practical scenarios, and developed theoretical aspects to validate their proposed applications. Presents physical layer security (PLS) under correlated fading environments, 5G wireless networks, and NOMA networks; Provides end-to-end analyses, combination of channel correlation and outdated CSI and their effects on PL; Includes contributions of PLS research written by global experts in academia and industry.
Simulation is integral to the successful design of modern radar systems, and there is arguably no better software for this purpose than MATLAB. But software and the ability to use it does not guarantee success. One must also: OE Understand radar operations and design philosophy OE Know how to select the radar parameters to meet the design requirements OE Be able to perform detailed trade-off analysis in the context of radar sizing, modes of operation, frequency selection, waveforms, and signal processing OE Develop loss and error budgets associated with the design MATLAB Simulations for Radar Systems Design teaches all of this and provides the M-files and hands-on simulation experience needed to design and analyze radar systems. Part I forms a comprehensive description of radar systems, their analysis, and the design process. The authors' unique approach involves a design case study introduced in Chapter 1 and followed throughout the text. As the treatment progresses, the complexity increases and the case study requirements are adjusted accordingly. Part II presents a series of chapters-some authored by other experts in the field-on specialized radar topics important to a full understanding of radar systems design and analysis. A comprehensive set of MATLAB programs and functions support both parts of the book and are available for download from the CRC Press Web site.
This book deals with the analysis and development of numerical methods for the time-domain analysis of multiphysical effects in superconducting circuits of particle accelerator magnets. An important challenge is the simulation of "quenching", i.e. the transition of a material from the superconducting to the normally electrically conductive state. The book analyses complex mathematical structures and presents models to simulate such quenching events in the context of generalized circuit elements. Furthermore, it proposes efficient parallelized algorithms with guaranteed convergence properties for the simulation of multiphysical problems. Spanning from theoretical concepts to applied research, and featuring rigorous mathematical presentations on one side, as well as simplified explanations of many complex issues, on the other side, this book provides graduate students and researchers with a comprehensive introduction on the state of the art and a source of inspiration for future research. Moreover, the proposed concepts and methods can be extended to the simulation of multiphysical phenomena in different application contexts.
This comprehensive handbook provides readers with a single-source reference to the theoretical fundamentals, physical mechanisms and principles of operation of all known microwave devices and various radars. The author discusses proven methods of computation and design development, process, schematic, schematic-technical and construction peculiarities of each breed of the microwave devices, as well as the most popular and original technical solutions for radars. Coverage also includes the history of creation of the most widely used radars, as well as guidelines for their potential upgrading. Offers readers a comprehensive, systematized view of all contemporary knowledge, acquired during the last 20 years, on radars and related disciplines; Provides a single-source reference on the physical mechanisms and principles of operation of the basic components of radio location devices, including theoretical aspects of designing the necessary, high-efficiency electronic devices and systems, as well as key, practical methods of computation and design; Presents complex topics using simple language, minimizing mathematics.
This book addresses microwave chemistry at both the physical and molecular level. Its main goal is to elaborate the highly complex scientific issues involved in the fundamental theory of microwave chemistry, and in industrialized applications in the near future.The book provides detailed insights into the characterization and measurement of dielectric properties under complex conditions, such as chemical reactions, high-temperature environments, etc. Considerable attention is paid to the theory of dynamics in microwave chemistry, from the view of both physical level and molecular level. Microwave-Material Interactions simulation is used for physical dynamical analysis, while a Microwave-Molecules Interactions methodology is proposed for molecular dynamical analysis. In turn, calculational examples are introduced for better description and validation, respectively. Lastly, the book proposes design strategies and calculational examples for large-scale application. Richly illustrated and including a wealth of worked-out examples, this book is ideal for all researchers, students and engineers who are just getting started in the dynamics of microwave chemistry.
Selective Laser Melting (SLM), also referred to as Laser Powder Bed Fusion (L-PBF), offers significant advantages for the manufacturing of complex, high-quality parts. However, its market share is still small compared to conventional manufacturing technologies. Major drawbacks hindering an industrial ramp-up are low productivity, high part costs and issues with quality and reproducibility. Comprehensive research has been done to overcome these challenges, but little attention has been paid to addressing them by optimizing the laser beam profile. Therefore, the author examines the effect of the laser beam profile on the productivity and process stability through both numerical and experimental investigations. The results show clear advantages an optimized laser beam profile offers.
This book presents a comprehensive mathematical and computational approach for solving electromagnetic problems of practical relevance, such as electromagnetic scattering and the cavity problems. After an in-depth introduction to the mathematical foundations of isogeometric analysis, which discusses how to conduct higher-order simulations efficiently and without the introduction of geometrical errors, the book proves quasi-optimal approximation properties for all trace spaces of the de Rham sequence, and demonstrates inf-sup stability of the isogeometric discretisation of the electric field integral equation (EFIE). Theoretical properties and algorithms are described in detail. The algorithmic approach is, in turn, validated through a series of numerical experiments aimed at solving a set of electromagnetic scattering problems. In the last part of the book, the boundary element method is combined with a novel eigenvalue solver, a so-called contour integral method. An algorithm is presented, together with a set of successful numerical experiments, showing that the eigenvalue solver benefits from the high orders of convergence offered by the boundary element approach. Last, the resulting software, called BEMBEL (Boundary Element Method Based Engineering Library), is reviewed: the user interface is presented, while the underlying design considerations are explained in detail. Given its scope, this book bridges an important gap between numerical analysis and engineering design of electromagnetic devices.
This book gathers a selection of peer-reviewed papers presented at the Tiangong-2 Data Utilization Conference, which was held in Beijing, China, in December 2018. As the first space laboratory in China, Tiangong-2 carries 3 new types of remote sensing payloads - the Wide-band Imaging Spectrometer (WIS), Three-dimensional Imaging Microwave Altimeter (TIMA), and Multi-band Ultraviolet Edge Imaging Spectrometer (MUEIS) - for observing the Earth. The spectrum of the WIS covers 18 bands, from visible to thermal infrared, with a swath of 300km. The TIMA is the first-ever system to use interferometric imaging radar altimeter (InIRA) technology to measure sea surface height and land topography at near-nadir angles with a wide swath. In turn, the MUEIS is the world's first large-field atmospheric detector capable of quasi-synchronously detecting the characteristics of ultraviolet limb radiation in the middle atmosphere. The Earth observation data obtained by Tiangong-2 has attracted many research groups and been applied in such diverse areas as land resources, water resources, climate change, environmental monitoring, agriculture, forestry, ecology, oceanography, meteorology and so on. The main subjects considered in this proceedings volume include: payload design, data processing, data service and application. It also provides a comprehensive introduction to the research results gleaned by engineers, researchers and scientists throughout the lifecycle of the Tiangong-2 Earth observation data, which will improve the payload development and enhance remote sensing data applications.
This book covers selected topics of automated logic synthesis dedicated to FPGAs. The authors focused on two main problems: decomposition of the multioutput functions and technology mapping. Additionally, the idea of using binary decision diagrams (BDD) in these processes was presented. The book is a scientific monograph summarizing the authors' many years of research. As a result, it contains a large number of experimental results, which makes it a valuable source for other researchers. The book has a significant didactic value. Its arrangement allows for a gradual transition from basic things (e.g., description of logic functions) to much more complex issues. This approach allows less advanced readers to better understand the described problems. In addition, the authors made sure that the issues described in the book were supported by practical examples, thanks to which the reader can independently analyze even the most complex problems described in the book.
This state-of-the-art book deals with advanced spatial modulation (ASM), which are a special class of recent Multiple-Input Multiple-Output MIMO techniques, for various applications like radio frequency (RF) based body area network (BAN) communication, free-space optical (FSO) communication, underwater optical wireless communication (UOWC) and hybrid FSO/RF communication. The performance analysis of such systems is achieved in terms of certain performance metrics and compared with other techniques available in the literature. Such SM based schemes can find its application in advanced 5G and 6G communications. The diagrams of the system models of the different schemes along with tables and examples will help readers get a clear understanding of this approach. This book elucidates required derivations, examples, and links various concepts related to this field so that readers can gain comprehensive knowledge. Pseudo codes or algorithms or MATLAB/MATHEMATICA programs are also provided so that readers can easily implement the concepts which they learn. This volume will be useful for students, researchers, and industry alike.
Omnidirectional antenna with high gain, low profile, vertical polarization, even CP polarization is very difficult to design, although it is from the dipole. In this book, a novel idea that the running wave in the coaxial wire is disturbed by the orthogonal slot array on the cylindrical metal shell is introduced, which radiates the CP wave in omni-direction. When feeding on two ends of the coaxial wire respectively, there will appear left hand circularly polarized (LHCP) omnidirectional radiation or right hand circularly polarized (RHCP) omnidirectional radiation. By introducing the T-shaped feed structure, the coaxial wire with slot array can conveniently produce the LHCP and RHCP radiation diversity with one end feeding. In the further, combining with the directional antenna, it will generate the pattern diversity in the half-sphere space. The antenna of the coaxial wire with slot array can further transform into conical CP beam antenna if the coaxial wire becomes into a conical frustum. By introducing the PIN diode into the slot, the antenna of the coaxial wire with slot array can radiate the reconfigurable directional beam by switching the states of the PIN diodes. By introducing a novel switchable microwave circuit, the omnidirectional /directional pattern switchable antenna can be realized easily.This book proposes a continues method to develop the potentialities of the omnidirectional antenna. And the readers can study the method or ideas of the omnidirectional slots antenna, even graft the CP or diversity methods to other antennae.
Using the load-pull method for RF and microwave power amplifier design This new book on RF power amplifier design, by industry expert Dr. John F. Sevic, provides comprehensive treatment of RF PA design using the load-pull method, the most widely used and successful method of design. Intended for the newcomer to load-pull, or the seasoned expert, the book presents a systematic method of generation of load-pull contour data, and matching network design, to rapidly produce a RF PA with first-pass success. The method is suitable from HF to millimeter-wave bands, discrete or integrated, and for high-power applications. Those engaged in design or fundamental research will find this book useful, as will the student new to RF and interested in PA design. The author presents a complete pedagogical methodology for RF PA design, starting with treatment of automated contour generation to identify optimum transistor performance with constant source power load-pull. Advanced methods of contour generation for simultaneous optimization of many variables, such as power, efficiency, and linearity are next presented. This is followed by treatment of optimum impedance identification using contour data to address specific objectives, such as optimum efficiency for a given linearity over a specific bandwidth. The final chapter presents a load-pull specific treatment of matching network design using load-pull contour data, applicable to both single-stage and multi-stage PA's. Both lumped and distributed matching network synthesis methods are described, with several worked matching network examples. Readers will see a description of a powerful and accessible method that spans multiple RF PA disciplines, including 5G base-station and mobile applications, as well as sat-com and military applications; load-pull with CAD systems is also included. They will review information presented through a practical, hands-on perspective. The book: Helps engineers develop systematic, accurate, and repeatable approach to RF PA design Provides in-depth coverage of using the load-pull method for first-pass design success Offers 150 illustrations and six case studies for greater comprehension of topics
Graphene-electrolyte systems are commonly found in cutting-edge research on electrochemistry, biotechnology, nanoelectronics, energy storage, materials engineering, and chemical engineering. The electrons in graphene intimately interact with ions from an electrolyte at the graphene-electrolyte interface, where the electrical or chemical properties of both graphene and electrolyte could be affected. The electronic behavior therefore determines the performance of applications in both Faradaic and non-Faradaic processes, which require intensive studies. This book systematically integrates the electronic theory and experimental techniques for both graphene and electrolytes. The theoretical sections detail the classical and quantum description of electron transport in graphene and the modern models for charges in electrolytes. The experimental sections compile common techniques for graphene growth/characterization and electrochemistry. Based on this knowledge, the final chapter reviews a few applications of graphene-electrolyte systems in biosensing, neural recording, and enhanced electronic devices, in order to inspire future developments. This multidisciplinary book is ideal for a wide audience, including physicists, chemists, biologists, electrical engineers, materials engineers, and chemical engineers.
India launched its maiden scientific expedition to Antarctica way back in 1981 and ever since annual expeditions are launched to address thematic research in the contemporary areas of Antarctic Science and Engineering. The initial efforts and achievements of India are not only significant but are of historical importance. This book discusses a wide array of topics that have entered the mainstream of geotechnical and geo environmental engineering over the initial two and half decades of India's presence in the icy continent 'Antarctica'. At the same time, it highlights the lessons learnt in cryo-engineering technologies. It covers various articles on many aspects of environmental science and collates the overall achievements in the fascinating field of Antarctic engineering and environmental impact assessment. Accordingly, this book covers articles on wind energy by Ramesh et al., and engineering aspects in Antarctica by Rai. Similarly, Pathak has reviewed the engineering details of Dakshin Gangotri and Maitri. On the contrary, Sharma has provided an interesting history about the process of establishment of Dakshin Gangotri station. Similarly, communication aspects have been highlighted by Dhaka. Commercial polymers and their utility in cold region have been discussed by Dabholker et al. Besides, Tiwari and Khare have reviewed the environmental studies carried out during the initial 25 years in Antarctic research base 'Maitri'. Similarly, Ramchandran and Sathe have studied the natural radioactivity in Antarctica while fire safety in Antarctica has been touched upon by Chatterjee. On the other hand, Veerbhadraiah and Jain have provided a status on environmental management services at Maitri station Additionally Tiwari has provided details on the new Indian Research Base 'Bharti' at Larsemann Hills region. It provides a one-stop reference for researchers and those working in industry and government.
This book focuses on the modelling methodology of microstrip interconnects, discussing various structures of single-input multiple-output (SIMO) tree interconnects for signal integrity (SI) engineering. Further, it describes lumped and distributed transmission line elements based on single-input single-output (SIMO) models of symmetric and asymmetric trees, and investigates more complicated phenomenon, such as interbranch coupling. The modelling approaches are based on the analytical methods using the Z-, Y- and T-matrices. The established method enables the S-parameters and voltage transfer function of SIMO tree to be determined. Providing illustrative results with frequency and time domain analyses for each tree interconnect structure, the book is a valuable resource for researchers, engineers, and graduate students in fields of analogue, RF/microwave, digital and mixed circuit design, SI and manufacturing engineering.
This book presents peer-reviewed articles from the 20th International Symposium on Optomechatronic Technologies (ISOT 2019), held in Goa, India. The symposium brought together students, researchers, professionals, and academicians in the field of optomechatronics and related areas on a common platform conducive to academic interaction with business professionals.
This book provides an in-depth coverage of the most recent developments in the field of wireless underground communications, from both theoretical and practical perspectives. The authors identify technical challenges and discuss recent results related to improvements in wireless underground communications and soil sensing in Internet of Underground Things (IOUT). The book covers both existing network technologies and those currently in development in three major areas of SitS: wireless underground communications, subsurface sensing, and antennas in the soil medium. The authors explore novel applications of Internet of Underground Things in digital agriculture and autonomous irrigation management domains. The book is relevant to wireless researchers, academics, students, and decision agriculture professionals. The contents of the book are arranged in a comprehensive and easily accessible format. Focuses on fundamental issues of wireless underground communication and subsurface sensing; Includes advanced treatment of IOUT custom applications of variable-rate technologies in the field of decision agriculture, and covers protocol design and wireless underground channel modeling; Provides a detailed set of path loss, antenna, and wireless underground channel measurements in various novel Signals in the Soil (SitS) testbed settings. |
You may like...
Practical Approach to Substrate…
Augustine Onyenwe Nwajana, Kenneth Siok Kiam Yeo
Hardcover
R5,609
Discovery Miles 56 090
Surrogate Modeling For High-frequency…
Slawomir Koziel, Anna Pietrenko-Dabrowska
Hardcover
R3,977
Discovery Miles 39 770
Antenna Architectures for Future…
Shiban Kishen Koul, Karthikeya G S
Hardcover
R3,625
Discovery Miles 36 250
|