![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Microwave technology
Analytical Techniques in Electromagnetics is designed for researchers, scientists, and engineers seeking analytical solutions to electromagnetic (EM) problems. The techniques presented provide exact solutions that can be used to validate the accuracy of approximate solutions, offer better insight into actual physical processes, and can be utilized in finding precise quantities of interest over a wide range of parameter values. Beginning with a review of basic EMs, the text: Describes the use of the separation of variables technique in Laplace, heat, and wave equations, covering rectangular, cylindrical, and spherical coordinate systems Explains the series expansion method, providing the solution of Poisson's equation in a cube and in a cylinder, and scattering by cylinders and spheres, as examples Addresses the conformal transformation technique, offering a visual display of conformal mapping and a brief introduction to the Schwarz-Christoffel transformation Employs worked-out problems to demonstrate various applications of Fourier sine and cosine, two-sided Fourier, Laplace, Hankel, and Mellin transform techniques Discusses perturbation techniques, supplying examples of perturbed results degenerating to their unperturbed versions as the perturbation parameters tend to zero Analytical Techniques in Electromagnetics maintains a balanced view of techniques for solving EM problems, refusing to overemphasize the importance of analytical methods at the expense of numerical techniques. Carefully selected topics give readers an appreciation of the kinds of EM problems that can be solved exactly.
Along with numerous opportunities in communication and imaging applications, the design of emerging millimeter-wave (mm-wave) and terahertz (THz) electronic circuits and systems in CMOS technology faces new challenges and requires new devices. Design of CMOS Millimeter-Wave and Terahertz Integrated Circuits with Metamaterials provides alternative solutions using CMOS on-chip metamaterials. Unlike conventional metamaterial devices on printed circuit boards (PCBs), the presented CMOS metamaterials can be utilized to build many mm-wave and THz circuits and systems on chip. Leveraging the authors' extensive expertise and experience with CMOS on-chip metamaterials, this book shows that with the use of metamaterials, one can realize coherent THz signal generation, amplification, transmission, and detection of phase-arrayed CMOS transistors with significantly improved performance. Offering detailed coverage from device to system, the book hereby: Describes integrated circuit design with application of metamaterials in CMOS technology Includes real CMOS integrated circuit examples and chip demonstrations with measurement results Evaluates novel mm-wave and THz communication and imaging systems under CMOS-based system-on-chip integration Design of CMOS Millimeter-Wave and Terahertz Integrated Circuits with Metamaterials reflects the latest research progress and provides a state-of-the-art reference on CMOS-based metamaterial devices and mm-wave and THz systems.
Low-visibility antennas have many attractive features, such as being low-profile, flexible, lightweight, small-volume, and low-cost. Low-Visibility Antennas for Communication Systems provides explicit guidelines for the development of these antennas. Offering valuable insight into emerging antenna technologies, the book: Introduces the fundamental theory of electromagnetics and antennas with few integral and differential equations, improving accessibility while providing sufficient mathematical detail Presents state-of-the-art advancements in microstrip, millimeter (mm) wave microstrip, wearable, wearable tunable printed, wideband wearable meta-material, and fractal printed antennas Discusses microwave integrated circuits (MICs), monolithic microwave integrated circuits (MMICs), micro-electro-mechanical systems (MEMS), and low temperature co-fired ceramics (LTCC) Low-Visibility Antennas for Communication Systems delivers a comprehensive and cutting-edge study of the design and application of low-visibility antennas, complete with design considerations, computed and measured results, and an extensive exploration of radio frequency and antenna measurements.
*Takes advantage of the new features offered by MATLAB (R) 2021 release *Brings the text to a current state of the art *Incorporates much of the feedback received from users using this book as a text and from practicing engineers; accordingly, several chapters have been rewritten *Presents unique topics not found in other books *Maintains a comprehensive and exhaustive presentation *Restructures the presentation to be more convenient for course use. *Provides a post-course reference for engineering students as they enter the field *Offers a companion solutions manual for instructors
Discusses the fundamental principles of the design and development of microwave satellite switches utilized in military, commercial, space, and terrestrial communication This book deals with important RF/microwave components such as switches and phase shifters, which are relevant to many RF/microwave applications. It provides the reader with fundamental principles of the operation of some basic ferrite control devices and explains their system uses. This in-depth exploration begins by reviewing traditional nonreciprocal components, such as circulators, and then proceeds to discuss the most recent advances. This sequential approach connects theoretical and scientific characteristics of the devices listed in the title with practical understanding and implementation in the real world. Microwave Polarizers, Power Dividers, Phase Shifters, Circulators and Switches covers the full scope of the subject matter and serves as both an educational text and resource for practitioners. Among the many topics discussed are microwave switching, circular polarization, planar wye and equilateral triangle resonators, and many others. Translates concepts and ideas fundamental to scientific knowledge into a more visual description Describes a wide array of devices including waveguides, shifters, and circulators Covers the use of finite element algorithms in design Microwave Polarizers, Power Dividers, Phase Shifters, Circulators and Switches is an ideal reference for all practitioners and graduate students involved in this niche field.
The large-scale production of chemicals to meet various societal needs has created environmental pollution, including pollution from byproducts and improper disposal of waste. With the world facing adverse consequences due to this pollution, green chemistry is increasingly being viewed as a means to address this concern. Since most organic syntheses require toxic solvents, more reaction time, and drastic conditions of temperature, conventional methods of organic synthesis are less preferred. Microwave-assisted organic synthesis is considered to be a promising green chemical approach because it reduces reaction time from days or hours to minutes or even seconds, and has many other advantages. It helps reduce side reactions and increase yields, uses fewer solvents or is almost solvent-free, has solid supported reactions, and improves purity. This book s main focus is microwave-assisted organic synthesis processes, particularly various reactions such as cycloaddition, rearrangement, elimination, substitution, oxidation, reduction, condensation, coupling, polymerization, nanomaterials, synthesis of heterocycles, and industrial applications under microwave irradiation. The time is not far off when this methodology will virtually replace existing and cumbersome methods of organic synthesis."
Go Beyond Basic Distributed Circuit Analysis An Introduction to Microwave Measurements has been written in a way that is different from many textbooks. As an instructor teaching a master's-level course on microwave measurements, the authorrecognized that few of today's graduate electrical engineering students are knowledgeable about microwave measurements beyond basic distributed circuit analysis. Written in a "how-it-works" spirit-strongly borrowing from instrument catalogs and application notes-this text covers a wide range of topics, clarifies many terms used widely on the subject, and equips the reader with the ability to grasp more advanced material.It starts with a brief overview of the basic theory and the building blocks required for understanding and using microwave measurement techniques. Oriented around the most commonly used instruments in microwave measurements-the network analyzer, the spectrum analyzer, and synthesized microwave source-it introduces the latest instruments and techniques and provides a brief description of traditional measurement techniques (slotted waveguide etc.). It offers an introduction to the mathematical basis behind microwave measurements as well as an overview of some of the practical components that are frequently used in microwave instruments. Observing that students generally grasp the subject better when actual numbers are given, rather than symbolic relations, the author includes examples involving numerical values that are scattered throughout the book. He also provides a detailed description of the vector network analyzer and the spectrum analyzer (explaining its principle of operation and calibration), which form the backbone of modern microwave measurements. In addition, he briefly addresses advanced topics such as pulsed measurements and non-linear network analysis. Comprised of ten chapters, this text: Discusses noise measurement and synthesized signal generation Provides an overview of RF wafer-probing and modern microwave oscilloscopes-relatively advanced topics Contains detailed derivations and exercises An Introduction to Microwave Measurements provides proficiency in subjects related to radio frequency (RF) and microwave systems, and is an ideal resource for senior undergraduate and first-year master's-level students as well as professionals in the wireless industry who deal with such systems but are not specialists in the area.
A comprehensive resource on airborne synthetic aperture radar (SAR) systems, Airborne Circulatory Polarized SAR explains the theory, system design, hardware and software, and applications of airborne circularly polarized SAR in environmental monitoring and other uses. Readers learn how to build the hardware and software of circularly polarized SAR, the antenna system, and how to generate point target responses and images using the range doppler algorithm (RDA) from raw signal data. The book discusses applications and analyzing techniques using a circularly polarized SAR system and image processing. Images and MATLAB codes are provided to help professionals and researchers with their applications and future studies. Features 1. Provides the theory of circularly polarized wave and polarimetry related to system design, scattering analysis, polarimetric SAR, and applications in microwave remote sensing. 2. Explains the real radio frequency (RF) system and the original antenna, including circuit explanation and know-how of measurement technique to adjust to the required parameter in system design. 3. Discusses the technique of ground test and flight mission to calibrate and validate the performance of airborne circularly polarized SAR. 4. Highlights image signal processing with MATLAB codes and how to obtain a single look complex (SLC) image for further applications. 5. Includes several applications of airborne circularly polarized SAR from international leading experts. This book is beneficial to professionals, researchers, academics, and graduate students from disciplines such as Electronic Engineering; Radar Systems; Aerospace Engineering; Signal Processing; Image Processing; Environmental Remote Sensing.
Recent research has brought the application of microwaves from the classical fields of heating, communication, and generation of plasma discharges into the generation of compact plasmas that can be used for applications such as FIB and small plasma thrusters. However, these new applications bring with them a new set of challenges. With coverage ranging from the basics to new and emerging applications, Compact Plasma and Focused Ion Beams discusses how compact high-density microwave plasmas with dimensions smaller than the geometrical cutoff dimension can be generated and utilized for providing focused ion beams of various elements. Starting with the fundamentals of the cutoff problem for wave propagation in waveguides and plasma diagnostics, the author goes on to explain in detail the plasma production by microwaves in a compact geometry and narrow tubes. He then thoroughly discusses wave interaction with bounded plasmas and provides a deeper understanding of the physics. The book concludes with an up-to-date account of recent research on pulsed microwaves and the application of compact microwave plasmas for multi-element FIB. It provides a consolidated and unified description of the emerging areas in plasma science and technology utilizing wave-based plasma sources based on the author's own work and experience. The book will be useful not only to established researchers in this area but will also serve as an excellent introduction to those interested in applying these ideas to various current and new applications.
Electrical Engineering High-Power Microwave Sources and Technologies A volume in the IEEE Press Series on RF and Microwave Technology Roger D. Pollard and Richard Booton, Series Editors Written by a prolific group of leading researchers, High-Power Microwave Sources and Technologies focuses primarily on the high-power microwave (HPM) technology most appropriate for military applications. It highlights the advances achieved from 1995 to 2000 as the result of a US Department of Defense (DoD) funded, $15 million Multidisciplinary University Research Initiative (MURI) program. The grant created a synergy between researchers in the DoD laboratories and the academic community, and established links with the microwave vacuum electronics industry, which has led to unprecedented collaborations that transcend laboratory and disciplinary boundaries. This essential reference provides the history, state-of-the-art, and possible future of HPM source research and technologies. The first alternative to the multiplicity of detailed applications-based HPM books and journal articles, this book familiarizes the reader with recent advances in this rapidly changing field. It presents a compendium of valuable information on HPM sources, representing significant enabling technologies, including beam and rf control, cathodes, windows, and computational techniques. The era of utilizing computational techniques to electronically design an HPM source prior to actually building the hardware has arrived. Gain insight into proven techniques and solutions that will enhance your source design. High-Power Microwave Sources and Technologies is an invaluable resource to researchers active in the field, faculty, graduateand post-graduate students. Special Note: All royalties realized from the sale of this book will fund the future research and publications activities of graduate students in the HPM field.
This book introduces in detail the theory of adaptive optics and its correction technology for light wave distortion in wireless optical communication. It discusses the adaptive control algorithm of wavefront distortion, proportional+integral control algorithm and iterative control algorithm, and double fuzzy adaptive PID control algorithm. It also covers the SPGD algorithm of adaptive optics correction, deformable mirrors eigenmode method of wavefront aberration correction, vortex beam wavefront detecting wavefront aberration correction, liquid crystal spatial light modulator wavefront correction, different wavelengths of Gaussian beam transmission wavefront differences in the atmospheric turbulence and correction and with wavefront tilt correction adaptive optics wavefront aberration correction. Various distortion correction methods are verified by experiments and the experimental results are analyzed. This book is suitable for engineering and technical personnel engaged in wireless optical communication, college teachers, graduate students and senior undergraduate students.
This book presents novel and fundamental aspects of metamaterials, which have been overlooked in most previous publications, including chirality, non-reciprocity, and the Dirac-cone formation. It also describes the cutting-edge achievements of experimental studies in the last several years: the development of high-regularity metasurfaces in optical frequencies, high-performance components in the terahertz range, and active, chiral, nonlinear and non-reciprocal metamaterials in the microwave range. Presented here are unique features such as tunable metamaterials based on the discharge plasma, selective thermal emission from plasmonic metasurfaces, and the classical analogue of the electromagnetically induced transparency. These most advanced research achievements are explained in understandable terms by experts in each topic. The descriptions with many practical examples facilitate learning, and not only researchers and experts in this field but also graduate students can read the book without difficulty. The reader finds how these new concepts and new developments are being utilized for practical applications.
A variety of devices at nanometer/molecular scale for electronic, photonic, optoelectronic, biological, and mechanical applications have been created through the rapid development of materials and fabrication technology. Further development of nanodevices strongly depends on the state-of-the-art knowledge of science and technology at the sub-100 nm scale. This book presents and highlights some of the key advances on, but not limited to, electronic and optoelectronic devices of nanometer/molecular scale, nanomechanics and nanoelectromechanical systems, electromechanical coupled devices, manipulation and aligning processes at nanometer/molecular scale, quantum phenomena, modeling of nanodevices and nanostructures, fabrication and property characterization of nanodevices, and nanofabrication with focused beam technology.
This book presents a simple, yet comprehensive, treatment of the basic principles and applications of novel phase masks and non-uniform optical windows under the increasingly popular umbrella term "pupil engineering." It discusses current research topics in the areas of phase-space representations for engineering imaging devices with extended depth of field, as well as sparse optical sensing and emergent phenomena such as vortices and singularities, highlighting the heuristic applications of key concepts in novel models and their graphic representations. The book is appealing to anyone interested in robotic vision and is a valuable resource for upper-level students, teachers, scientists, and engineers in the field of image science, lasers, and digital image processing.
A comprehensive presentation of the theory and simulation of optical waveguides and wave propagations in a guided environment, Guided Wave Photonics: Fundamentals and Applications with MATLAB(r) supplies fundamental and advanced understanding of integrated optical devices that are currently employed in modern optical fiber communications systems and photonic signal processing systems. While there are many texts available in this area, none provide the breadth and depth of coverage and computational rigor found in this one. The author has distilled the information into a very practical, usable format. In a logical progression of theory and application, he starts with Maxwell's equations and progresses directly to optical waveguides (integrated optic and fiber optic), couplers, modulators, nonlinear effects and interactions, and system applications. With up-to-date coverage of applicable algorithms, design guides, material systems, and the latest device and system applications, the book addresses:
Providing fundamental understanding of lightwave guiding and manipulating techniques, the text covers the field of integrated photonics by giving the principles, theoretical and applications. It explains how to solve the optical modes and their coupling as well as how to manipulate lightwaves for applications in communications and signal processing.
This book tells you all you want to know about optical fibers: Their structure, their light-guiding mechanism, their material and manufacture, their use. It began with telephone, then came telefax and email. Today we use search engines, music downloads and internet videos, all of which require shuffling of bits and bytes by the zillions. The key to all this is the conduit: the line which is designed to carry massive amounts of data at breakneck speed. In their data carrying capacity optical fiber lines beat all other technologies (copper cable, microwave beacons, satellite links) hands down, at least in the long haul; wireless devices rely on fibers, too. Several effects tend to degrade the signal as it travels down the fiber: they are spelled out in detail. Nonlinear processes are given due consideration for a twofold reason: On the one hand they are fundamentally different from the more familiar processes in electrical cable. On the other hand, they form the basis of particularly interesting and innovative applications, provided they are understood well enough. A case in point is the use of so-called solitons, i.e. special pulses of light which have the wonderful property of being able to heal after perturbation. The book will take you from the physical basics of ray and beam optics, explain fiber structure and the functions of optical elements, and bring you to the forefront of both applications and research. The state of the art of high speed data transmission is described, and the use of fiber optic sensors in metrology is treated. The book is written in a pedagogical style so that students of both physics and electrical engineering, as well as technicians and engineers involved in optical technologies, will benefit. The new edition is largely updated and has new sections on nonlinear phenomena in fibers as well as on the latest trends in applications.
The dominant medium for soliton propagation in electronics, nonlinear transmission line (NLTL) has found wide application as a testbed for nonlinear dynamics and KdV phenomena as well as for practical applications in ultra-sharp pulse/edge generation and novel nonlinear communication schemes in electronics. While many texts exist covering solitons in general, there is as yet no source that provides a comprehensive treatment of the soliton in the electrical domain. Drawing on the award winning research of Carnegie Mellon's David S. Ricketts, Electrical Solitons Theory, Design, and Applications is the first text to focus specifically on KdV solitons in the nonlinear transmission line. Divided into three parts, the book begins with the foundational theory for KdV solitons, presents the core underlying mathematics of solitons, and describes the solution to the KdV equation and the basic properties of that solution, including collision behaviors and amplitude-dependent velocity. It also examines the conservation laws of the KdV for loss-less and lossy systems. The second part describes the KdV soliton in the context of the NLTL. It derives the lattice equation for solitons on the NLTL and shows the connection with the KdV equation as well as the governing equations for a lossy NLTL. Detailing the transformation between KdV theory and what we measure on the oscilloscope, the book demonstrates many of the key properties of solitons, including the inverse scattering method and soliton damping. The final part highlights practical applications such as sharp pulse formation and edge sharpening for high speed metrology as well as high frequency generation via NLTL harmonics. It describes challenges to realizing a robust soliton oscillator and the stability mechanisms necessary, and introduces three prototypes of the circular soliton oscillator using discrete and integrated platforms.
This is the first book summarizing the theoretical basics of thermal nondestructive testing (TNDT) by combining elements of heat conduction, infrared thermography, and industrial nondestructive testing. The text contains the physical models of TNDT, heat transfer in defective and sound structures, and thermal properties of materials. Also included are the optimization of TNDT procedures, defect characterization, data processing in TNDT, active and passive TNDT systems, as well as elements of statistical data treatment and decision making. This text contains in-depth descriptions of applications in infrared/thermal testing within aerospace, power production, building, as well as the conservation of artistic monuments The book is intended for the industrial specialists who are involved in technical diagnostics and nondestructive testing. It may also be useful for academic researchers, undergraduate, graduate and PhD university students.
A reflection of the intense study of the effects of electromagnetic fields on living tissues that has taken place during the last decades, Advanced Electroporation Techniques in Biology and Medicine summarizes most recent experimental findings and theories related to permeabilization of biomembranes by pulsed electric fields. Edited by experts and including contributions from pioneers in the field, the book focuses on biophysical mechanisms of electroporation and applications of this phenomenon in biomedical research and medicine. The field of electroporation is now mature enough to move from journal pages to book covers. The book leads readers from the basics and history of electroporation, through mechanisms of membrane permeabilization in lipid bilayers and living cells, to electrically-mediated gene delivery and cancer therapy in animals and humans. This book is an interdisciplinary compilation intended broadly for biomedical and physical scientists, engineers, and clinicians. It can also be used as a textbook for students in advanced courses in biomedical engineering, molecular and cell biology, as well as in biophysics and clinical medicine.
Until now, novices had to painstakingly dig through the literature to discover how to use Monte Carlo techniques for solving electromagnetic problems. Written by one of the foremost researchers in the field, Monte Carlo Methods for Electromagnetics provides a solid understanding of these methods and their applications in electromagnetic computation. Including much of his own work, the author brings together essential information from several different publications. Using a simple, clear writing style, the author begins with a historical background and review of electromagnetic theory. After addressing probability and statistics, he introduces the finite difference method as well as the fixed and floating random walk Monte Carlo methods. The text then applies the Exodus method to Laplace s and Poisson s equations and presents Monte Carlo techniques for handing Neumann problems. It also deals with whole field computation using the Markov chain, applies Monte Carlo methods to time-varying diffusion problems, and explores wave scattering due to random rough surfaces. The final chapter covers multidimensional integration. Although numerical techniques have become the standard tools for solving practical, complex electromagnetic problems, there is no book currently available that focuses exclusively on Monte Carlo techniques for electromagnetics. Alleviating this problem, this book describes Monte Carlo methods as they are used in the field of electromagnetics.
Multiple antenna (MIMO) techniques are an essential component of any contemporary wireless communication system because they can significantly improve the performance over conventional single-antenna links. While MIMO techniques are relatively well understood at the link level, the interaction of multiple MIMO links and their impact on performance at the system level necessitate fundamentally new investigations. We propose a book that investigates the theoretical foundations of MIMO networks consisting of multiple simultaneous MIMO links and applies these principles in the design of next-generation wireless networks. About ten years ago, the information theoretic foundations of MIMO techniques were developed and showed the promise of using multiple antennas at both the transmitter and receiver of a wireless link. An enormous amount of research ensued to develop practical techniques for achieving these promised gains. Within the last few years, the information theory community has again made significant breakthroughs, this time in the understanding of multiuser MIMO systems. Currently in industry, new wideband wireless standards, including EV-DO Rev C, UMTS LTE, and WiMax, are under development to meet the insatiable demands for high-rate, ubiquitous wireless services. For the first time, and for all of these standards, MIMO technology will play an integral role in meeting the aggressive performance requirements for increased data rates, decreased latency, and improved coverage. Motivated by the confluence of these two eventsa "the emergence of multiuser MIMO theory and the development of commercial MIMO-based systemsa "we propose to connect the two worlds with a bookthat combines theory and practice. This book would provide a systematic survey of MIMO systems, starting with a review of MIMO link-level techniques and conventional single-antenna system-level techniques, summarizing the latest results in multiuser MIMO systems and developments in cross-layer techniques, and applying these techniques to the analysis and design of both current and future packet-based wireless networks. In addition to providing theoretical results, the book would serve as a reference for practicing communication engineers by providing useful descriptions of spatial channel models and system simulation methodologies for MIMO networks
This book provides a comprehensive overview of the theory and practical development of metamaterial-based perfect absorbers (MMPAs). It begins with a brief history of MMPAs which reviews the various theoretical and experimental milestones in their development. The theoretical background and fundamental working principles of MMPAs are then discussed, providing the necessary background on how MMPAs work and are constructed. There then follows a section describing how different MMPAs are designed and built according to the operating frequency of the electromagnetic wave, and how their behavior is changed. Methods of fabricating and characterizing MMPAs are then presented. The book elaborates on the performance and characteristics of MMPAs, including electromagnetically-induced transparency (EIT). It also covers recent advances in MMPAs and their applications, including multi-band, broadband, tunability, polarization independence and incidence independence. Suitable for graduate students in optical sciences and electronic engineering, it will also serve as a valuable reference for active researchers in these fields.
Discussed is the electromagnetic field theory and its mathematical methods. Maxwell's equations are presented and explained. It follows a detailed discussion of electrostatics, flux, magnetostatics, quasi stationary fields and electromagnetic fields. The author presents how to apply numerical methods like finite differences, finite elements, boundary elements, image charge methods, and Monte-Carlo methods to field theory problems. He offers an outlook on fundamental issues in physics including quantum mechanics. Some of these issues are still unanswered questions. A chapter dedicated to the theory of special relativity, which allows to simplify a number of field theory problems, complements this book. A book whose usefulness is not limited to engineering students, but can be very helpful for physicists and other branches of science.
Do you want to know how to design high efficiency RF and microwave solid state power amplifiers? Read this book to learn the main concepts that are fundamental for optimum amplifier design. Practical design techniques are set out, stating the pros and cons for each method presented in this text. In addition to novel theoretical discussion and workable guidelines, you will find helpful running examples and case studies that demonstrate the key issues involved in power amplifier (PA) design flow. Highlights include: Clarification of topics which are often misunderstood and misused, such as bias classes and PA nomenclatures.The consideration of both hybrid and monolithic microwave integrated circuits (MMICs).Discussions of switch-mode and current-mode PA design approaches and an explanation of the differences.Coverage of the linearity issue in PA design at circuit level, with advice on low distortion power stages.Analysis of the hot topic of Doherty amplifier design, plus a description of advanced techniques based on multi-way and multi-stage architecture solutions. "High Efficiency RF and Microwave Solid State Power Amplifiers" is: an ideal tutorial for MSc and postgraduate students taking courses in microwave electronics and solid state circuit/device design;a useful reference text for practising electronic engineers and researchers in the field of PA design and microwave and RF engineering. With its unique unified vision of solid state amplifiers, you won't find a more comprehensive publication on the topic.
This book presents an in-depth treatment of routing and wavelength assignment for optical networks, and focuses specifically on quality-of-service and fault resiliency issues. It reports on novel approaches for the development of routing and wavelength assignment schemes for fault-resilient optical networks, which improve their performance in terms of signal quality, call blocking, congestion level and reliability, without a substantial increase in network setup cost. The book first presents a solution for reducing the effect of the wavelength continuity constraint during the routing and wavelength assignment phase. Further, it reports on an approach allowing the incorporation of a traffic grooming mechanism with routing and wavelength assignment to enhance the effective channel utilization of a given capacity optical network using fewer electrical-optical-electrical conversions. As a third step, it addresses a quality of service provision scheme for wavelength-division multiplexing (WDM)-based optical networks. Lastly, the book describes the inclusion of a tree-based fault resilience scheme in priority-based dispersion-reduced wavelength assignment schemes for the purpose of improving network reliability, while maintaining a better utilization of network resources. Mainly intended for graduate students and researchers, the book provides them with extensive information on both fundamental and advanced technologies for routing and wavelength assignment in optical networks. The topics covered will also be of interest to network planners and designers. |
You may like...
Coloured - How Classification Became…
Tessa Dooms, Lynsey Ebony Chutel
Paperback
The Complexities of Race - Identity…
Charmaine L. Wijeyesinghe
Hardcover
R2,529
Discovery Miles 25 290
Song For Sarah - Lessons From My Mother
Jonathan Jansen, Naomi Jansen
Hardcover
(3)
|