Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Microwave technology
In chapters culled from the popular and critically acclaimed Electromagnetic Compatibility Handbook, Electrostatic Discharge provides a tightly focused, convenient, and affordable reference for those interested primarily in this subset of topics. Author Kenneth L. Kaiser demystifies electrostatic discharge and explains the source and limitations of the approximations, guidelines, models, and rules-of-thumb used in this field. The material is presented in a unique question-and-answer format that gets straight to the heart of each topic. The book includes numerous examples and uses Mathcad to generate all of the figures and many solutions to equations. In many cases, the entire Mathcad program is provided.
Green Energy Materials Handbook gives a systematic review of the development of reliable, low-cost, and high-performance green energy materials, covering mainstream computational and experimental studies as well as comprehensive literature on green energy materials, computational methods, experimental fabrication and characterization techniques, and recent progress in the field. This work presents complete experimental measurements and computational results as well as potential applications. Among green technologies, electrochemical and energy storage technologies are considered as the most practicable, environmentally friendly, and workable to make full use of renewable energy sources. This text includes 11 chapters on the field, devoted to 4 important topical areas: computational material design, energy conversion, ion transport, and electrode materials. This handbook is aimed at engineers, researchers, and those who work in the fields of materials science, chemistry, and physics. The systematic studies proposed in this book can greatly promote the basic and applied sciences.
This reference explores the sources, characteristics, bioeffects, and health hazards of extremely low-frequency (ELF) fields and radio frequency radiation (RFR), analyzing current research as well as the latest epidemiological studies to assess potential risks associated with exposure and to develop effective safety guidelines. Compiles reports and investigations from four decades of study on the effect of nonionizing electromagnetic fields and radiation on human health Summarizing modern engineering approaches to control exposure, Electromagnetic Fields and Radiation discusses: EM interaction mechanisms in biological systems Explorations into the impact of EM fields on free radicals, cells, tissues, organs, whole organisms, and the population Regulatory standards in the United States, Canada, Europe, and Asia Pacific Evaluation of incident fields from various EM sources Measurement surveys for various sites including power lines, substations, mobile systems, cellular base stations, broadcast antennas, traffic radar devices, heating equipment, and other sources Dosimetry techniques for the determination of internal EM fields Conclusions reached by the Food and Drug Administration, World Health Organization, and other institutions
"Presents the most recent developments in the materials, properties, and performance characteristics of photographic, electrophotographic, electrostatic, diazo, and ink jet imaging processes. Provides current techniques and modern applications for ink jet, thermal, and toner-related imaging systems."
Multifunctional Antennas (MFA) are comparatively a new area for antenna research and finds applications in various modern wireless radios, like Cognitive Radio (CR) in Software Defined Radio (SDR) technology and MIMO technology. This book is first attempt and an invaluable resource which deals with the design and realization of various kinds of multifunctional antennas. After clearly explaining the exclusive features of MFAs, the book presents various designs of such antennas considering versatile modern and upcoming applications. Written by three internationally known researchers, Multi-Functional Ultra Wideband Antennas: Trends, Techniques and Applications: Provides a lucid introduction on UWB systems, historical perspective and discusses various applications of such systems Discusses fundamentals of antennas and its characterization in time and frequency domains, primarily aimed for the beginners in the area Revisits the design and realization of various classical UWB antennas Discusses various techniques of designing frequency-notched UWB antennas and provide detailed comparison of the techniques Deals with the techniques of deriving multiple antenna functionalities from a single antenna Incorporates exclusive discussions on modern reconfigurable antennas and printed and dielectric resonator based MIMO antennas with clear focus on recent and upcoming technological requirements With Multi-Functional Ultra Wideband Antennas: Trends, Techniques and Applications, antenna engineers, communication system engineers, graduate students, academic/industry researchers will gain a thorough knowledge on design of such antennas with clear physical insight and understanding. Chinmoy Saha, PHD, is an associate Professor in the Department of Avionics at Indian Institute of Space Science and Technology, Thiruvananthapuram, Kerala, India. His current research interest includes Microwave Circuits, Engineered Materials, Metamaterial Inspired Antennas and Circuits, reconfigurable and multi-functional antennas for modern wireless applications, Dielectric Resonator antennas, THz antennas and wireless power transfer. He is the author or coauthor of several books, scientific journals and recipient of several prestigious awards. Jawad Yaseen Siddiqui, PHD, is an associate Professor in the Department of Radio Physics and Electronics at University of Calcutta, Kolkata, India. His current research interest includes ultra-wideband antennas, frequency reconfigurable antennas, tapered slot antennas and multi-functional antennas for cognitive radio application. He is the author or coauthor of several books, scientific journals and recipient of prestigious awards. He is a Co-Principal Investigator on Stratosphere Troposphere (ST) Radar Project at the University of Calcutta, Kolkata, India. Yahia M.M. Antar, PHD, is a Professor in the Department of Department of Electrical and Computer Engineering at the Royal Military College of Canada, Kingston, ON, Canada. He is the author or coauthor of several books, scientific journals and recipient of prestigious awards which includes IEEE-Antennas and Propagation Society prestigious Chen-To-Tai Distinguished Educator Award for 2017, 2015 IEEE Canada J. M. Ham outstanding Engineering Education Award, 2014 IEEE Canada RA Fessenden Silver Medal, 2012 Queen's Diamond Jubilee Medal from the Governor General of Canada and many more.
Creates a wide-ranging knowledge base on gas sensor design and fabrication work as applied to industrial and hazardous sectors Provides restructured literature for researchers and academicians working in the field of design and fabrication of gas sensors. Delivers state-of-the-art work going on in the domain, including micro- and nano-sensors Covers the whole range of gas-sensing aspects, from basics, synthesis, and processing to characterization, testing, and application development Serves as a ready reckoner with a wealth of information to aspiring graduate and postdoctoral researchers engaged in the gas-sensing domain
This book explores recent developments in the design and synthesis of greener nanomaterials and their eco-friendly utilization at the industrial scale. It defines key material descriptors required for their successful employment in different applications and discusses their cost-effective synthesis from natural extracts. The text provides comprehensive links between the design/fabrication of nanoparticles and their catalytic performance (activity, selectivity, and stability) in various applications. The topics covered include photocatalysis, wastewater treatment, environmental ecology, medical biology, biotechnology, sensors, cosmetics, remediation, energy, and phytoformulation.
Covers a variety materials, including hard materials, soft materials, metals, and composites Describes nanotechnology approaches, modern piezoelectric techniques, and physical and mechanical studies of the structure-sensitive properties of the materials Reviews advanced manufacturing for antenna applications and embroidered RFID tags for wearable applications Considers additive manufacturing of cellular solids and metal additive manufacturing Discusses advanced materials for sound absorption
This interdisciplinary book, Advanced Microscopy: A Strong Analytical Tool in Materials Science, covers the methodology and applications of different advanced microscopic techniques in various research fields, including chemistry, nanotechnology, polymers, chemical engineering, and biomedical engineering, providing an informative overview that helps to determine the best applications for advanced materials. Materials usually behave very differently at nanoscale in all aspects, and this volume shows how microscopy can help provide a detailed understanding of materials such as semiconductors, metals, polymers, biopolymers, etc. The volume illustrates advanced microscopic techniques that include scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), confocal microscopy, and others. The microscopy techniques presented in the volume show applications in many areas of science, including botany and plant science, medicine, nanotechnology, chemistry, food science, waste management, and others. This book presents the diverse advanced microscopic techniques for researchers, giving a better understanding as well as implementation of novel techniques in materials science.
Following in the footsteps of its popular predecessors, High Power Microwaves, Third Edition continues to provide a wide-angle, integrated view of the field of high power microwaves (HPMs). This third edition includes significant updates in every chapter as well as a new chapter on beamless systems that covers nonlinear transmission lines. Written by an experimentalist, a theorist, and an applied theorist, respectively, the book offers complementary perspectives on different source types. The authors address: How HPM relates historically and technically to the conventional microwave field The possible applications for HPM and the key criteria that HPM devices have to meet in order to be applied How high power sources work, including their performance capabilities and limitations The broad fundamental issues to be addressed in the future for a wide variety of source types The book is accessible to several audiences. Researchers currently in the field can widen their understanding of HPM. Present or potential users of microwaves will discover the advantages of the dramatically higher power levels that are being made available. Newcomers to the field can pursue further research. Decision makers in direct energy acquisition and related fields, such as radar, communications, and high energy physics, can see how developments in HPM will affect them.
The field of electromagnetic sensitivity is the new epidemic of the 21st century, and can cause disease of the automatic nerve system in any part of the body. This is as a result of chemical sensitivity, in which over 80,000 chemicals are involved, resulting in innumerable combinations. A cursory understanding of the combinations can help clinicians partially understand the associated problems and thus help in the diagnosis and treatment of electromagnetic sensitivities. But a basic understanding of environmentally induced illness and healing must first be understood by the clinicians before diseases occur such as cardiac arrhythmia, muscle spasms, and nerve pain. Key Features: Describes how an understanding of the vast combinations of electrical and chemical sensitivities will help in the diagnosis and treatment of electromagnetic sensitivities Reveals the complexity and multi-faceted presentation often seen in chemical sensitivity and chronic degenerative disease cases Provides information backed up by rigorous scientific data including hundreds of tables and figures as online resources Features a Dedication to Robert Becker, MD, an orthopedic surgeon who was one of the first clinicians to recognize the significance of EMF in medicine and surgery, and also to his assistant Andrew Marino, PhD, who helped develop the basic science of orthopedic electromagnet healing
Completely revised and updated to reflect recent advances in the fields of materials science and electromagnetics, Electromagnetics of Time Varying Complex Media, Second Edition provides a comprehensive examination of current topics of interest in the research community-including theory, numerical simulation, application, and experimental work. Written by a world leader in the research of frequency transformation in a time-varying magnetoplasma medium, the new edition of this bestselling reference discusses how to apply a time-varying medium to design a frequency and polarization transformer. This authoritative resource remains the only electromagnetic book to cover time-varying anisotropic media, Frequency and Polarization Transformer based on a switched magnetoplasma medium in a cavity, and FDTD numerical simulation for time-varying complex medium. Providing a primer on the theory of using magnetoplasmas for the coherent generation of tunable radiation, early chapters use a mathematical model with one kind of complexity-eliminating the need for high-level mathematics. Using plasma as the basic medium to illustrate various aspects of the transformation of an electromagnetic wave by a complex medium, the text highlights the major effects of each kind of complexity in the medium properties. This significantly expanded edition includes: Three new parts: (a) Numerical Simulation: FDTD Solution, (b) Application: Frequency and Polarization Transformer, and (c) Experiments A slightly enhanced version of the entire first edition, plus 70% new material Reprints of papers previously published by the author-providing researchers with complete access to the subject The text provides the understanding of research techniques useful in electro-optics, plasma science and engineering, microwave engineering, and solid state devices. This complete resource supplies an accessible treatment of the effect of time-varying parameters in conjunction with one or more additional kinds of complexities in the properties of particular mediums.
This book examines the human auditory effects of exposure to directed beams of high-power microwave pulses, which research results have shown can cause a cascade of health events when aimed at a human subject or the subject's head. The book details multidisciplinary investigations using physical theories and models, physiological events and phenomena, and computer analysis and simulation. Coverage includes brain anatomy and physiology, dosimetry of microwave power deposition, microwave auditory effect, interaction mechanisms, shock/pressure wave induction, Havana syndrome, and application in microwave thermoacoustic tomography (MTT). The book will be welcomed by scientists, academics, health professionals, government officials, and practicing biomedical engineers as an important contribution to the continuing study of the effects of microwave pulse absorption on humans.
This book is devoted to the systematic description of the role of microgeometry of modern piezo-active composites in the formation of their piezoelectric sensitivity. In five chapters, the authors analyse kinds of piezoelectric sensitivity for piezo-active composites with specific connectivity patterns and links between the microgeometric feature and piezoelectric response. The role of components and microgeometric factors is discussed in the context of the piezoelectric properties and their anisotropy in the composites. Interrelations between different types of the piezoelectric coefficients are highlighted. This book fills a gap in piezoelectric materials science and provides readers with data on the piezoelectric performance of novel composite materials that are suitable for sensor, transducer, hydroacoustic, energy-harvesting, and other applications.
The book proposed to the readers' attention represents an attempt to state and systematize extensive material of our experimental and theoretical investigations of heteromagnetic interactions in ferrite semiconductor structures of the active type carried out at the department of general physics, Saratov State University named after N.G. Chernyshevskiyandin the Design of ceof critical technologies(DO CT) of SRI-Tantal Corp. of the Holding company "Tantal" in recent years. The novelty and complexity of the physical phenomena determined the high-technologychar- ter ofourinvestigationsat the jointof someleads- semiconductormicroelectronics, microcircuitry, radio engineering, radiophysics, physics of magnetic phenomena, magnetoelectronics. Accumulation of extensive theoretical and experimental material on mag- toelectronics of the microwave and EHF-ranges, investigations on bigyrotropic microelectronics in ferrite lms and structures on their basis, decisive experiments con rming the multifunctionality of interactions in ferrite semiconductor structures of the active type have determined the new lead being promising. The results of our physical investigations of multifunctional, multiparametric interactions in ferrite semiconductorstructures of the active type - (oscillators, c- verters, ampli ers, frequencysynthesizers, and sensors) in the radio-wave range are discussed in the book. Performance of such a great volume of investigations became possible by jo- ing the efforts of leading experts and scientists of Saratov State University, leading industrial enterprises of Russia in the spheres of semiconductor microelectr- ics manufacturing, development of microcontrollers, radioelectronic systems, and ferrites.
The field of electromagnetic sensitivity is the new epidemic of the 21st century, and can cause disease of the automatic nerve system in any part of the body. This is as a result of chemical sensitivity, in which over 80,000 chemicals are involved, resulting in innumerable combinations. A cursory understanding of the combinations can help clinicians partially understand the associated problems and thus help in the diagnosis and treatment of electromagnetic sensitivities. But a basic understanding of environmentally induced illness and healing must first be understood by the clinicians before diseases occur such as cardiac arrhythmia, muscle spasms, and nerve pain.
Analysis of Synchronous Machines, Second Edition is a thoroughly modern treatment of an old subject. Courses generally teach about synchronous machines by introducing the steady-state per phase equivalent circuit without a clear, thorough presentation of the source of this circuit representation, which is a crucial aspect. Taking a different approach, this book provides a deeper understanding of complex electromechanical drives. Focusing on the terminal rather than on the internal characteristics of machines, the book begins with the general concept of winding functions, describing the placement of any practical winding in the slots of the machine. This representation enables readers to clearly understand the calculation of all relevant self- and mutual inductances of the machine. It also helps them to more easily conceptualize the machine in a rotating system of coordinates, at which point they can clearly understand the origin of this important representation of the machine. Provides numerical examples Addresses Park's equations starting from winding functions Describes operation of a synchronous machine as an LCI motor drive Presents synchronous machine transient simulation, as well as voltage regulation Applying his experience from more than 30 years of teaching the subject at the University of Wisconsin, author T.A. Lipo presents the solution of the circuit both in classical form using phasor representation and also by introducing an approach that applies MathCAD (R), which greatly simplifies and expands the average student's problem-solving capability. The remainder of the text describes how to deal with various types of transients-such as constant speed transients-as well as unbalanced operation and faults and small signal modeling for transient stability and dynamic stability. Finally, the author addresses large signal modeling using MATLAB (R)/Simulink (R), for complete solution of the non-linear equations of the salient pole synchronous machine. A valuable tool for learning, this updated edition offers thoroughly revised content, adding new detail and better-quality figures.
A Complete Reference for the 21st Century Until recently, much of the communications technology in the former Eastern bloc countries was largely unknown. Due to the historically competitive nature of East/West relations, scientific groups operated independently, without the benefit of open communication on theoretical frameworks and experimental technologies. As these countries have begun to bridge the gap and work in a more cooperative environment, the need has grown for a comprehensive guide which assimilates all the information in this vast knowledge bank. Ionosphere and Applied Aspects of Radio Communication and Radar meets the demand for an updated reference on this continually evolving global technology. This book examines the changes that have occurred in the past two or three decades. It thoroughly reviews ionospheric radio propagation, over-horizon and above-horizon radars, and miniature ionospheric stations used for investigating nonregular phenomena occurring in the ionosphere. In addition, it also comprehensively discusses land-satellite and satellite-satellite communications. This volume also reviews an area that has been all but ignored in previous works: the effects of plasma irregularities on radio waves propagation through the inhomogeneous ionosphere. Here, a heavy focus is placed on the effects of these irregular phenomena. And due to the recent wireless revolution, more attention than ever has been aimed on improving the efficiency of land-satellite and satellite-satellite communication networks, which are fully addressed. Included are- Transport processes and photochemistry reactions occurring in the regular homogeneous ionosphere Nonlinear phenomena occurring in the irregular ionosphere Instabilities in the inhomogeneous disturbed ionosphere Various ambient natural and artificial sources and corresponding plasma irregularities Written by two leading scientists, this book will be an invaluable guide to anyone working in this ever-changing field.
The first experiments with relativistic magnetrons (PM), resulted in notable results, in the USA - Massachusetts Institute of Technology and the USSR - Institute of Applied Physics. Academy of Sciences of the USSR (Gorky), and the Nuclear Physics Research Institute at the Tomsk State University, hundreds of megawatts to several gigawatts with an efficiency of 10-30% were obtained. Relativistic high-frequency electronics has now become one of the fastest growing areas of scientific research. This reference is devoted to theoretical and experimental studies of relativistic magnetrons and is written by a leading expert who worked directly on these systems.
This book presents quantum phononics as an exciting new field of research, and introduces readers to the quantum nature of phonons and their application to quantum technologies. Both the theory of and recent experiments in "quantum phononics," involving e.g. coherent phonons, phonon squeezing, coherent control, and phonon quantum technologies, are presented. The theoretical background of the generation and detection of phonons is described in a way that will be easy to understand for graduate students and experimental scientists who are newcomers to the field. Moreover, the book focuses on coherent phonons produced by ultrafast laser pulses, which can be used for the coherent control of atomic motions in solids and phase transformation. The laser-matter interaction is treated using a density matrix formalism of the time-dependent Schroeedinger equation. In addition, the third-order nonlinear optical response of condensed matter is also described.
Linear induction accelerators are successfully used as power supplies for numerous devices of relativistic high-frequency electronics. This book addresses ways to solve physical and engineering problems arising in the calculation, design, modeling and operation of linear induction accelerators intended for supplying relativistic microwave devices. It reviews and analyzes both classic and recent studies on the topic of linear induction accelerators (LIA) for generating and amplifying microwave radiation by relativistic devices.
A Comprehensive Source for Taking on the Next Stage of OLED R&D OLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes brings together key topics across the field of organic light-emitting diodes (OLEDs), from fundamental chemistry and physics to practical materials science and engineering aspects to design and manufacturing factors. Experts from top academic institutions, industry, and national laboratories provide thorough, up-to-date coverage on the most useful materials, devices, and design and fabrication methods for high-efficiency lighting. The first part of the book covers all the construction materials of OLED devices, from substrate to encapsulation. For the first time in book form, the second part addresses challenges in devices and processing, including architectures and methods for new OLED lighting and display technologies. The book is suitable for a broad audience, including materials scientists, device physicists, synthetic chemists, and electrical engineers. It can also serve as an introduction for graduate students interested in applied aspects of photophysics and electrochemistry in organic thin films.
The gyrotron is a powerful source of coherent radiation that has experienced significant improvement since its invention. Today gyrotrons are capable of delivering hundreds of kilowatts of power at microwave and millimeter wavelengths, and they have important applications ranging from the electron cyclotron resonance heating of fusion plasmas to industrial and scientific applications and communications. Furthermore, the exciting potential applications of these devices and their derivatives span an even wider range of technologies. Drawing on the author's wide experience, this book gives a comprehensive review of the state of the art in gyrotron technology, covering the theory, design and applications. It will be a valuable resource for all engineers and scientists working with and developing high-power microwave devices. The book includes an extensive references list which provides an excellent guide to the related literature.
This book provides a comprehensive introduction to the current status and future trends of materials and component design for fifth-generation (5G) wireless communications and beyond. Necessitated by rapidly increasing numbers of mobile devices and data volumes, and acting as a driving force for innovation in information technology, 5G networks are broadly characterized by ubiquitous connectivity, extremely low latency, and very high-speed data transfer. Such capabilities are facilitated by nanoscale and massive multi-input multi-output (MIMO) with extreme base station and device densities, as well as unprecedented numbers of antennas. This book covers semiconductor solutions for 5G electronics, design and performance enhancement for 5G antennas, high frequency PCB materials and design requirements, materials for high frequency filters, EMI shielding materials and absorbers for 5G systems, thermal management materials and components, and protective packaging and sealing materials for 5G devices. It explores fundamental physics, design, and engineering aspects, as well as the full array of state-of-the-art applications of 5G-and-beyond wireless communications. Future challenges and potential trends of 5G-and-beyond applications and related materials technologies are also addressed. Throughout this book, illustrations clarify core concepts, techniques, and processes. At the end of each chapter, references serve as a gateway to the primary literature in the field. This book is essential reading for today's students, scientists, engineers and professionals who want to understand the current status and future trends in materials advancement and component design in 5G and beyond, and acquire skills for selecting and using materials and 5G component design that takes economic and regulatory aspects into account.
Deployment of Rare Earth Materials in Microware Devices, RF Transmitters, and Laser Systems describes the deployment of rare earth materials that offer significant improvement in the RF performance, reliability, weight, and size of microwave devices, RF transmitters, and laser systems. RF components, microware transmitters, laser systems, and special timing devices are described, with an emphasis on improvement in the performance parameters. |
You may like...
Digital Signal Processing In High-Speed…
Jianjun Yu, Nan Chi
Hardcover
R4,301
Discovery Miles 43 010
Practical Approach to Substrate…
Augustine Onyenwe Nwajana, Kenneth Siok Kiam Yeo
Hardcover
R5,609
Discovery Miles 56 090
Handbook of Research on Emerging Designs…
Jamal Zbitou, Mostafa Hefnawi, …
Hardcover
R8,461
Discovery Miles 84 610
Zero Index Metamaterials - Trends and…
Nishant Shankhwar, Ravindra Kumar Sinha
Hardcover
R3,268
Discovery Miles 32 680
Photon Counting Detectors for X-ray…
Hiroaki Hayashi, Natsumi Kimoto, …
Hardcover
R2,656
Discovery Miles 26 560
|