0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (1)
  • R250 - R500 (15)
  • R500+ (1,808)
  • -
Status
Format
Author / Contributor
Publisher

Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Microwave technology

Computational Methods for Electromagnetic and Optical Systems (Hardcover, 2nd edition): John M. Jarem, Partha P. Banerjee Computational Methods for Electromagnetic and Optical Systems (Hardcover, 2nd edition)
John M. Jarem, Partha P. Banerjee
R5,936 Discovery Miles 59 360 Ships in 10 - 15 working days

The current rapid and complex advancement applications of electromagnetic (EM) and optical systems calls for a much needed update on the computational methods currently in use. Completely revised and reflecting ten years of develoments, this second edition of the bestselling Computational Methods for Electromagnetic and Optical Systems provides the update so desperately needed in this field.

Offering a wealth of new material, this second edition begins with scalar wave propagation and analysis techniques, chiral and metamaterials, and photonic band gap structures. It examines Pontying vector and stored energy, as well as energy, group, and phase velocities; reviews k-space state variable formation with applications to anistropic planar systems; and presents full-field rigorous coupled wave analysis of planar diffraction gratings with applications to H-mode, E-mode, crossed gratings, single and multilayered diffraction grating analysis, and diffraction from anistropic gratings.

Later chapters highlight spectral techniques and RCWA as applied to the analysis of dynamic wave-mixing in PR materials with induced transmission and reflection gratings and demonstrate the RCWA algorithm to analyze cylindrical and spherical systems using circular, bipolar cylindrical, and spherical coordinates. The book concludes with several RCWA computational case studies involving scattering from spatially inhomogeneous eccentric circular cylinders, solved in bipolar coordinates. Many of these examples apply the complex Poynting theorem or the forwardscattering (optical) theorem to validate numerical solutions by verifying power conservation.

Using common computational tools such as Fortran, MATLAB, COMSOL, and RSOFT, the text offers numerous examples to illuminate the material, many of which employ a full-field vector approach to analyze and solve Maxwell 's equations in anisotropic media where a standard wave equation approach is intractable. Designed to introduce novel spectral computational techniques, the book demonstrates the application of these methods to analyze a variety of EM and optical systems.

Applied Discrete-Time Queues (Hardcover, 2nd ed. 2016): Attahiru Alfa Applied Discrete-Time Queues (Hardcover, 2nd ed. 2016)
Attahiru Alfa
R4,319 R3,518 Discovery Miles 35 180 Save R801 (19%) Ships in 10 - 15 working days

This book introduces the theoretical fundamentals for modeling queues in discrete-time, and the basic procedures for developing queuing models in discrete-time. There is a focus on applications in modern telecommunication systems. It presents how most queueing models in discrete-time can be set up as discrete-time Markov chains. Techniques such as matrix-analytic methods (MAM) that can used to analyze the resulting Markov chains are included. This book covers single node systems, tandem system and queueing networks. It shows how queues with time-varying parameters can be analyzed, and illustrates numerical issues associated with computations for the discrete-time queueing systems. Optimal control of queues is also covered. Applied Discrete-Time Queues targets researchers, advanced-level students and analysts in the field of telecommunication networks. It is suitable as a reference book and can also be used as a secondary text book in computer engineering and computer science. Examples and exercises are included.

PEDOT - Principles and Applications of an Intrinsically Conductive Polymer (Hardcover): Andreas Elschner, Stephan Kirchmeyer,... PEDOT - Principles and Applications of an Intrinsically Conductive Polymer (Hardcover)
Andreas Elschner, Stephan Kirchmeyer, Wilfried Lovenich, Udo Merker, Knud Reuter
R6,333 Discovery Miles 63 330 Ships in 10 - 15 working days

The unparalleled large-scale commercial application of poly(3,4-ethylenedioxythiophene), otherwise known as PEDOT, continues to fuel a need for literature about it that is concise, easily available, but sufficiently comprehensive. Designed to meet the requirements of readers from different areas of expertise and experience with the substance, PEDOT: Principles and Applications of an Intrinsically Conductive Polymer provides a comprehensive overview of chemical, physical, and technical information about this preeminent and most forwardly developed electrically conductive polymer. An indispensable resource for researchers, developers, and users of PEDOT-written by the researchers who succeeded in commercializing it A necessary response to the massive interest-as well as patents and papers-spawned by PEDOT, this handbook provides basic knowledge and explores technical applications, based on information generated by universities and academic research, as well as by industrial scientists. Available in various formulations and conductivities, this versatile PEDOT can be adapted for the needs and specific industrial applications of its different users. Although valuable information exists in handbooks on polythiophene chemistry and physics, under which PEDOT falls, until now, few if any books have focused exclusively on this important conducting polymer-certainly not one that so completely elucidates both its experimental and practical aspects. This book: Begins with a brief history of conducting polymers and polythiophenes Describes the invention of PEDOT and its commercial outgrowth, PEDOT:PSS Emphasizes key technical and commercial aspects and usage of PEDOT and how they have stimulated scientific research in a wide range of fields Explains the chemical and physical background for PEDOT in terms of its primary use and incorporation in products including cellular phones and flat panel displays Valuable for readers at any level of familiarity with PEDOT, this one-stop compilation of information offers specialists several unpublished results from the authors' celebrated work, as well as often overlooked information from patents. Balancing sufficient detail and references for further study, this book is a powerful tool for anyone working in the field.

Silicon Nanomaterials Sourcebook, Two-Volume Set (Paperback): Klaus D Sattler Silicon Nanomaterials Sourcebook, Two-Volume Set (Paperback)
Klaus D Sattler
R2,799 Discovery Miles 27 990 Ships in 10 - 15 working days

This comprehensive tutorial guide to silicon nanomaterials spans from fundamental properties, growth mechanisms, and processing of nanosilicon to electronic device, energy conversion and storage, biomedical, and environmental applications. It also presents core knowledge with basic mathematical equations, tables, and graphs in order to provide the reader with the tools necessary to understand the latest technology developments. From low-dimensional structures, quantum dots, and nanowires to hybrid materials, arrays, networks, and biomedical applications, this Sourcebook is a complete resource for anyone working with this materials: Covers fundamental concepts, properties, methods, and practical applications. Focuses on one important type of silicon nanomaterial in every chapter. Discusses formation, properties, and applications for each material. Written in a tutorial style with basic equations and fundamentals included in an extended introduction. Highlights materials that show exceptional properties as well as strong prospects for future applications. Klaus D. Sattler is professor physics at the University of Hawaii, Honolulu, having earned his PhD at the Swiss Federal Institute of Technology (ETH) in Zurich. He was honored with the Walter Schottky Prize from the German Physical Society, and is the editor of the sister work also published by Taylor & Francis, Carbon Nanomaterials Sourcebook, as well as the acclaimed multi-volume Handbook of Nanophysics.

2D Materials - Characterization, Production and Applications (Paperback): Craig E. Banks, Dale A. C. Brownson 2D Materials - Characterization, Production and Applications (Paperback)
Craig E. Banks, Dale A. C. Brownson
R1,467 Discovery Miles 14 670 Ships in 10 - 15 working days

Most reference texts covering two-dimensional materials focus specifically on graphene, when in reality, there are a host of new two-dimensional materials poised to overtake graphene. This book provides an authoritative source of information on twodimensional materials covering a plethora of fields and subjects and outlining all two-dimensional materials in terms of their fundamental understanding, synthesis, and applications.

Digital Protective Relays - Problems and Solutions (Hardcover, New): Vladimir Gurevich Digital Protective Relays - Problems and Solutions (Hardcover, New)
Vladimir Gurevich
R4,665 Discovery Miles 46 650 Ships in 10 - 15 working days

Digital (microprocessor-based) protection relays (DPR) are dominating the global market today, essentially pushing all other types of relays out of the picture. These devices play a vital role in power operations for fields ranging from manufacturing, transportation, and communication to banking and healthcare.

Digital Protective Relays: Problems and Solutions offers a unique focus on the problems and disadvantages associated with their use, a crucial aspect that goes largely unexamined. While there is already a massive amount of literature documenting the benefits of using digital relays, devices as sophisticated as DPR obviously have faults and drawbacks that need to be understood. This book covers these, delving into the less familiar inner workings of DPR to fill a critical literary void and help decision makers and specialists in the field of protection relays find their way out of the informational vacuum. The book provides vital information to assist them in evaluating relay producers' claims and then choose the right product.

Tearing away the informational "curtain" that exists today, this book:

  • Describes construction of functional modules of existing relays
  • Analyzes drawbacks and problems of digital relays
  • Details specific technical problems and their solutions
  • Assesses dangers of intentional destructive electromagnetic intrusions
  • Discusses alternative (non-microprocessor-based) protection relays, and problems related to international standards

Focusing on practical solutions, this book explains how to correctly choose digital relays and ensure their proper use while avoiding the many problems they can present. The author avoids mathematics and theory in favor of more practical, tangible information not easily found elsewhere. Setting itself apart from other books on the subject, this volume shines a light into the long hidden "black box" of information on DPRs, giving users a valuable tool to help them anticipate possible problems, something sorely lacking in the literature.

Handbook of Optoelectronic Device Modeling and Simulation (Two-Volume Set) (Paperback): Joachim Piprek Handbook of Optoelectronic Device Modeling and Simulation (Two-Volume Set) (Paperback)
Joachim Piprek
R2,853 Discovery Miles 28 530 Ships in 10 - 15 working days

Optoelectronic devices are now ubiquitous in our daily lives, from light emitting diodes (LEDs) in many household appliances to solar cells for energy. This handbook shows how we can probe the underlying and highly complex physical processes using modern mathematical models and numerical simulation for optoelectronic device design, analysis, and performance optimization. It reflects the wide availability of powerful computers and advanced commercial software, which have opened the door for non-specialists to perform sophisticated modeling and simulation tasks. The chapters comprise the know-how of more than a hundred experts from all over the world. The handbook is an ideal starting point for beginners but also gives experienced researchers the opportunity to renew and broaden their knowledge in this expanding field.

2D Materials for Nanoelectronics (Paperback): Michel Houssa, Athanasios Dimoulas, Alessandro Molle 2D Materials for Nanoelectronics (Paperback)
Michel Houssa, Athanasios Dimoulas, Alessandro Molle
R1,501 Discovery Miles 15 010 Ships in 10 - 15 working days

Major developments in the semiconductor industry are on the horizon through the use of two-dimensional (2D) materials, such as graphene and transition metal dichalcogenides, for integrated circuits (ICs). 2D Materials for Nanoelectronics is the first comprehensive treatment of these materials and their applications in nanoelectronic devices. Comprised of chapters authored by internationally recognised researchers, this book: Discusses the use of graphene for high-frequency analog circuits Explores logic and photonic applications of molybdenum disulfide (MoS2) Addresses novel 2D materials including silicene, germanene, stanene, and phosphorene Considers the use of 2D materials for both field-effect transistors (FETs) and logic circuits Provides background on the simulation of structural, electronic, and transport properties from first principles 2D Materials for Nanoelectronics presents extensive, state-of-the-art coverage of the fundamental and applied aspects of this exciting field.

Magnetics, Dielectrics, and Wave Propagation with MATLAB Codes (Hardcover): Carmine Vittoria Magnetics, Dielectrics, and Wave Propagation with MATLAB Codes (Hardcover)
Carmine Vittoria
R4,672 Discovery Miles 46 720 Ships in 10 - 15 working days

Because future microwave, magnetic resonance, and wave propagation systems will involve miniature devices, nanosize structures, multifunctional applications, and composites of various types of materials, their development requires distinctly multidisciplinary collaborations. That means specialized approaches will not be sufficient to satisfy requirements. Anticipating that many students lack specialized training in magnetism and magnetics, Magnetics, Dielectrics, and Wave Propagation with MATLAB (R) Codes avoids application-specific descriptions.Instead, it connects phenomenological approaches with comprehensive microscopic formulations to provide a new and sufficiently broad physical perspective on modern trends in microwave technology. Reducing complex calculation approaches to their simplest form, this book's strength is in its step-by-step explanation of the procedure for unifying Maxwell's equations with the free energy via the equation of motion. With clear and simple coverage of everything from first principles to calculation tools, it revisits the fundamentals that govern the phenomenon of magnetic resonance and wave propagation in magneto-dielectric materials. Introduces constitutive equations via the free energy, paving the way to consider wave propagation in any media This text helps students develop an essential understanding of the origin of magnetic parameters from first principles, as well as how these parameters are to be included in the large-scale free energy. More importantly, it facilitates successful calculation of said parameters, which is required as the dimensionality of materials is reduced toward the microscopic scale. The author presents a systematic way of deriving the permeability tensor of the most practical magnetic materials, cubic and hexagonal crystal structures. Using this simple and very general approach, he effectively bridges the gap between microscopic and macroscopic principles as applied to wave propagation.

Spintronics Handbook, Second Edition: Spin Transport and Magnetism - Volume Three: Nanoscale Spintronics and Applications... Spintronics Handbook, Second Edition: Spin Transport and Magnetism - Volume Three: Nanoscale Spintronics and Applications (Paperback, 2nd edition)
Evgeny Y. Tsymbal, Igor Zutic
R1,514 Discovery Miles 15 140 Ships in 10 - 15 working days

Spintronics Handbook, Second Edition offers an update on the single most comprehensive survey of the two intertwined fields of spintronics and magnetism, covering the diverse array of materials and structures, including silicon, organic semiconductors, carbon nanotubes, graphene, and engineered nanostructures. It focuses on seminal pioneering work, together with the latest in cutting-edge advances, notably extended discussion of two-dimensional materials beyond graphene, topological insulators, skyrmions, and molecular spintronics. The main sections cover physical phenomena, spin-dependent tunneling, control of spin and magnetism in semiconductors, and spin-based applications. Features: Presents the most comprehensive reference text for the overlapping fields of spintronics (spin transport) and magnetism. Covers the full spectrum of materials and structures, from silicon and organic semiconductors to carbon nanotubes, graphene, and engineered nanostructures. Extends coverage of two-dimensional materials beyond graphene, including molybdenum disulfide and study of their spin relaxation mechanisms Includes new dedicated chapters on cutting-edge topics such as spin-orbit torques, topological insulators, half metals, complex oxide materials and skyrmions. Discusses important emerging areas of spintronics with superconductors, spin-wave spintronics, benchmarking of spintronics devices, and theory and experimental approaches to molecular spintronics. Evgeny Tsymbal's research is focused on computational materials science aiming at the understanding of fundamental properties of advanced ferromagnetic and ferroelectric nanostructures and materials relevant to nanoelectronics and spintronics. He is a George Holmes University Distinguished Professor at the Department of Physics and Astronomy of the University of Nebraska-Lincoln (UNL), Director of the UNL's Materials Research Science and Engineering Center (MRSEC), and Director of the multi-institutional Center for NanoFerroic Devices (CNFD). Igor Zutic received his Ph.D. in theoretical physics at the University of Minnesota. His work spans a range of topics from high-temperature superconductors and ferromagnetism that can get stronger as the temperature is increased, to prediction of various spin-based devices. He is a recipient of 2006 National Science Foundation CAREER Award, 2005 National Research Council/American Society for Engineering Education Postdoctoral Research Award, and the National Research Council Fellowship (2003-2005). His research is supported by the National Science Foundation, the Office of Naval Research, the Department of Energy, and the Airforce Office of Scientific Research.

Laser-Induced Graphene (Hardcover): Ruquan Ye, James M. Tour Laser-Induced Graphene (Hardcover)
Ruquan Ye, James M. Tour
R10,971 Discovery Miles 109 710 Ships in 10 - 15 working days

LIG is a revolutionary technique that uses a common CO2 infrared laser scriber, like the one used in any machine shop, for the direct conversion of polymers into porous graphene under ambient conditions. This technique combines the preparation and patterning of 3D graphene in a single step, without the use of wet chemicals. The ease in the structural engineering and excellent mechanical properties of the 3D graphene obtained have made LIG a versatile technique for applications across many fields. This book compiles cutting-edge research on LIG by different research groups all over the world. It discusses the strategies that have been developed to synthesize and engineer graphene, including controlling its properties such as porosity, composition, and surface characteristics. The authors are pioneers in the discovery and development of LIG and the book will appeal to anyone involved in nanotechnology, chemistry, environmental sciences, and device development, especially those with an interest in the synthesis and applications of graphene-based materials.

Integrated Circuit Fabrication (Hardcover): Kumar Shubham, Ankaj Gupta Integrated Circuit Fabrication (Hardcover)
Kumar Shubham, Ankaj Gupta
R2,736 Discovery Miles 27 360 Ships in 10 - 15 working days

This book covers theoretical and practical aspects of all major steps in the fabrication sequence. This book can be used conveniently in a semester length course on integrated circuit fabrication. This text can also serve as a reference for practicing engineer and scientist in the semiconductor industry. IC Fabrication are ever demanding of technology in rapidly growing industry growth opportunities are numerous. A recent survey shows that integrated circuit currently outnumber humans in UK, USA, India and China. The spectacular advances in the development and application of integrated circuit technology have led to the emergence of microelectronic process engineering as an independent discipline. Integrated circuit fabrication text books typically divide the fabrication sequence into a number of unit processes that are repeated to form the integrated circuit. The effect is to give the book an analysis flavor: a number of loosely related topics each with its own background material. Note: T& F does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.

Application of Visible Light Wireless Communication in Underground Mine (Hardcover, 1st ed. 2021): Simona Mirela Riurean,... Application of Visible Light Wireless Communication in Underground Mine (Hardcover, 1st ed. 2021)
Simona Mirela Riurean, Monica Leba, Andreea Cristina Ionica
R1,424 Discovery Miles 14 240 Ships in 18 - 22 working days

This book provides a chronological literature review of optical wireless communication, followed by a detailed blueprint of a visible light communication (VLC) setup with the key characteristics of LEDs and photodetectors. Next, the optical channel impulse response and its description for different possible topologies is presented together with a description of the optical and electrical setup for both optical transmitters (oTx) and optical receivers (oRx). Different single carrier and multi-carrier modulations particularly applied in visible light communication setups are also presented. Both the optical and electrical modules of oTx and oRx are simulated and then prototyped and tested as embedded devices in an underground positioning and monitoring system for a continuous real time identification of the personnel on the main underground galleries where the illumination network is already installed. Presents a comprehensive look at visible light communication technology, both in description and application; Shows where and how VLC has been launched on the market as an alternative or partner technology to the existing wireless communication technologies based on radio frequency; Includes special focus on underground positioning and monitoring with embedded VLC.

Carbons for Electrochemical Energy Storage and Conversion Systems (Hardcover): Francois Beguin, Elzbieta Frackowiak Carbons for Electrochemical Energy Storage and Conversion Systems (Hardcover)
Francois Beguin, Elzbieta Frackowiak
R5,526 Discovery Miles 55 260 Ships in 10 - 15 working days

As carbons are widely used in energy storage and conversion systems, there is a rapidly growing need for an updated book that describes their physical, chemical, and electrochemical properties. Edited by those responsible for initiating the most progressive conference on Carbon for Energy Storage and Environment Protection (CESEP), this book undoubtedly fills this need. Written in collaboration with prominent scientists in carbon science and its energy-related applications, Carbons for Electrochemical Energy Storage and Conversion Systems provides the most complete and up-to-date coverage available on carbon materials for application in electrochemical energy storage and conversion. The text studies different carbon materials and their detailed physicochemical properties and provides an in-depth review of their wide-ranging applications-including lithium-ion batteries, supercapacitors, fuel cells, and primary cells. Recognizing that most scientists involved with these applications are materials scientists rather than electrochemists, the text begins with a review of electrochemical principles and methods. It then covers the different forms of traditional sp2 carbons, introduces novel techniques for preparing advanced carbons, and describes the main physicochemical properties which control the electrochemical behavior of carbons. The second half of the book focuses on research and provides a wealth of original information on industrial applications. Complete with an abundance of figures, tables, equations, and case studies, this book is the ideal one-stop reference for researchers, engineers, and students working on developing the carbon-based energy storage and conversion systems of tomorrow.

Critical Currents and Superconductivity - Ferromagnetism Coexistence in High-Tc Oxides (Paperback): Samir Khene Critical Currents and Superconductivity - Ferromagnetism Coexistence in High-Tc Oxides (Paperback)
Samir Khene
R1,457 Discovery Miles 14 570 Ships in 10 - 15 working days

The book comprises six chapters which deal with the critical currents and the ferromagnetism-superconductivity coexistence in high-Tc oxides. It begins by gathering key data for superconducting state and the fundamental properties of the conventional superconductors, followed by a recap of the basic theories of superconductivity. It then discusses the differences introduced by the structural anisotropy on the Ginzburg-Landau approach and the Lawrence-Doniach model before addressing the dynamics of vortices and the ferromagnetism-superconductivity coexistence in high-Tc oxides, and provides an outline of the pinning phenomena of vortices in these materials, in particular the pinning of vortices by the spins. It elucidates the methods to improve the properties of superconducting materials for industrial applications. This optimization aims at obtaining critical temperatures and densities of critical currents at the maximum level possible. Whereas the primary objective is the basic mechanisms pushing the superconductivity towards high temperatures, the secondary objective is to achieve a better understanding of the vortices pinning. This book is targeted at researchers and graduate students of fundamental and engineering sciences.

Electron-Lattice Interactions in Semiconductors (Hardcover): Yuzo Shinozuka Electron-Lattice Interactions in Semiconductors (Hardcover)
Yuzo Shinozuka
R3,400 Discovery Miles 34 000 Ships in 10 - 15 working days

This book presents theoretical treatments on various electronic and atomic processes in non-metallic materials from a unified point of view. It starts with the basic properties of semiconductors, treating the system as a macroscopic association of electrons and ions. In their ground state, fruitful results are derived, such as the band theory for electrons in a periodic lattice and a useful concept of "hole." The electron-lattice interaction is then introduced as a dynamical response of condensed matter when it is electronically excited. With the aid of proper configuration coordinate diagrams, various phenomena are precisely examined, including carrier scattering, polaron formation, lattice relaxation, Stokes shift and phonon side band in optical spectrum, intrinsic and extrinsic self-trapping, and structural changes. The book provides readers a deep understanding of the physics underlying these phenomena and excellent insight to develop their further research. Graduate students who have finished the basic study on solid-state physics and quantum mechanics and research scientists and engineers in materials science and engineering will benefit immensely from it.

Design, Fabrication, Properties and Applications of Smart and Advanced Materials (Paperback): Xu Hou Design, Fabrication, Properties and Applications of Smart and Advanced Materials (Paperback)
Xu Hou
R1,503 Discovery Miles 15 030 Ships in 10 - 15 working days

This book introduces various advanced, smart materials and the strategies for the design and preparation for novel uses from macro to micro or from biological, inorganic, organic to composite materials. Selecting the best material is a challenging task, requiring tradeoffs between material properties and designing functional smart materials. The development of smart, advanced materials and their potential applications is a burgeoning area of research. Exciting breakthroughs are anticipated in the future from the concepts and results reported in this book.

Carbon Nanomaterials Based on Graphene Nanosheets (Paperback): Ling Bing Kong Carbon Nanomaterials Based on Graphene Nanosheets (Paperback)
Ling Bing Kong
R1,518 Discovery Miles 15 180 Ships in 10 - 15 working days

Since the discovery of graphene, it has become one of the most widely and extensively studied materials. This book aims to summarize the progress in synthesis, processing, characterization and applications of a special group of nanocarbon materials derived from graphene or graphene related derivatives by using various strategies in different forms. More specifically, three forms of macrosized materials are presented, i.e., one-dimension or 1D (fibers, wires, yarns, streads, etc.), two-dimension or 2D (films, membranes, papers, sheets, etc.) and three-dimension or 3D (bulk, hydrogels, aerogels, foams, sponges, etc.). Seven chapters are included with the first chapter serving to introduce the concept, definition, and nomenclature of graphene, graphene oxide and their derivatives. The main topics are covered in Chapters 2-7. Although they have coherent connections, each chapter of them is designed such that they can be studied independently. The target readers of this book include undergraduate students, postgraduate students, researchers, designers, engineers, professors, and program/project managers from the fields of materials science and engineering, applied physics, chemical engineering, biomaterials, materials manufacturing and design, institutes, and research founding agencies.

Spintronics Handbook, Second Edition: Spin Transport and Magnetism - Volume One: Metallic Spintronics (Paperback, 2nd edition):... Spintronics Handbook, Second Edition: Spin Transport and Magnetism - Volume One: Metallic Spintronics (Paperback, 2nd edition)
Evgeny Y. Tsymbal, Igor Zutic
R1,532 Discovery Miles 15 320 Ships in 10 - 15 working days

Spintronics Handbook, Second Edition offers an update on the single most comprehensive survey of the two intertwined fields of spintronics and magnetism, covering the diverse array of materials and structures, including silicon, organic semiconductors, carbon nanotubes, graphene, and engineered nanostructures. It focuses on seminal pioneering work, together with the latest in cutting-edge advances, notably extended discussion of two-dimensional materials beyond graphene, topological insulators, skyrmions, and molecular spintronics. The main sections cover physical phenomena, spin-dependent tunneling, control of spin and magnetism in semiconductors, and spin-based applications.

Radar Scattering and Imaging of Rough Surfaces - Modeling and Applications with MATLAB (R) (Hardcover): Kun-Shan Chen Radar Scattering and Imaging of Rough Surfaces - Modeling and Applications with MATLAB (R) (Hardcover)
Kun-Shan Chen
R4,088 Discovery Miles 40 880 Ships in 10 - 15 working days

Radar scattering and imaging of rough surfaces is an active interdisciplinary area of research with many practical applications in fields such as mineral and resource exploration, ocean and physical oceanography, military and national defense, planetary exploration, city planning and land use, environmental science, and many more. By focusing on the most advanced analytical and numerical modeling and describing both forward and inverse modeling, Radar Scattering and Imaging of Rough Surfaces: Modeling and Applications with MATLAB (R) connects the scattering process to imaging techniques by vivid examples through numerical and experimental demonstrations and provides computer codes and practical uses. This book is unique in its simultaneous treatment of radar scattering and imaging. Key Features Bridges physical modeling with simulation for resolving radar imaging problems (the first comprehensive work to do so) Provides excellent basic and advanced information for microwave remote-sensing professionals in various fields of science and engineering Covers most advanced analytical and numerical modeling for both backscattering and bistatic scattering Includes MATLAB (R) codes useful not only for academics but also for radar engineers and scientists to develop tools applicable in different areas of earth studies Covering both the theoretical and the practical, Radar Scattering and Imaging of Rough Surfaces: Modeling and Applications with MATLAB (R) is an invaluable resource for professionals and students using remote sensing to study and explain the Earth and its processes. University and research institutes, electrical and radar engineers, remote-sensing image users, application software developers, students, and academics alike will benefit from this book. The author, Kun-Shan Chen, is an internationally known and respected engineer and scientist and an expert in the field of electromagnetic modeling.

Wave Propagation and Radiation in Gyrotropic and Anisotropic Media (Hardcover, 2010 Ed.): Abdullah Eroglu Wave Propagation and Radiation in Gyrotropic and Anisotropic Media (Hardcover, 2010 Ed.)
Abdullah Eroglu
R4,134 Discovery Miles 41 340 Ships in 18 - 22 working days

As technology matures, communication system operation regions shift from mic- wave and millimeter ranges to sub-millimeter ranges. However, device perf- mance at very high frequencies suffers drastically from the material de?ciencies. As a result, engineers and scientists are relentlessly in search for the new types of materials, and composites which will meet the device performance requirements and not present any de?ciencies due to material electrical and magnetic properties. Anisotropic and gyrotropic materials are the class of the materials which are very important in the development high performance microwave devices and new types composite layered structures. As a result, it is a need to understand the wave propagation and radiation characteristics of these materials to be able to realize them in practice. This book is intended to provide engineers and scientists the required skill set to design high frequency devices using anisotropic, and gyrotropic materials by providing them the theoretical background which is blended with the real world engineering application examples. It is the author's hope that this book will help to ?ll the gap in the area of applied electromagnetics for the design of microwave and millimeter wave devices using new types of materials. Each chapter in the book is designed to give the theory ?rst on the subject and solidify it with application examples given in the last chapter. The application examples for the radiation problems are given at the end of Chap. 5 and Chap. 6 for anisotropic and gyrotropic materials, respectively, after the theory section.

Electromagnetic Metamaterials - Transmission Line Theory and Microwave Applications (Hardcover): C Caloz Electromagnetic Metamaterials - Transmission Line Theory and Microwave Applications (Hardcover)
C Caloz
R3,669 Discovery Miles 36 690 Ships in 10 - 15 working days

Electromagnetic metamaterials-from fundamental physics to advanced engineering applications
This book presents an original generalized transmission line approach associated with non-resonant structures that exhibit larger bandwidths, lower loss, and higher design flexibility. It is based on the novel concept of composite right/left-handed (CRLH) transmission line metamaterials (MMs), which has led to the development of novel guided-wave, radiated-wave, and refracted-wave devices and structures.
The authors introduced this powerful new concept and are therefore able to offer readers deep insight into the fundamental physics needed to fully grasp the technology. Moreover, they provide a host of practical engineering applications.
The book begins with an introductory chapter that places resonant type and transmission line metamaterials in historical perspective. The next six chapters give readers a solid foundation in the fundamentals and practical applications:
* Fundamentals of LH MMs describes the fundamental physics and exotic properties of left-handed metamaterials
* TL Theory of MMs establishes the foundations of CRLH structures in three progressive steps: ideal transmission line, LC network, and real distributed structure
* Two-Dimensional MMs develops both a transmission matrix method and a transmission line method to address the problem of finite-size 2D metamaterials excited by arbitrary sources
* Guided-Wave Applications and Radiated-Wave Applications present a number of groundbreaking applications developed by the authors
* The Future of MMs sets forth an expert view on future challenges and prospects
This engineering approach to metamaterials paves the way for a new generation of microwave and photonic devices and structures. It is recommended for electrical engineers, as well as physicists and optical engineers, with an interest in practical negative refractive index structures and materials.

Cognitive Radio Networks - Efficient Resource Allocation in Cooperative Sensing, Cellular Communications, High-Speed Vehicles,... Cognitive Radio Networks - Efficient Resource Allocation in Cooperative Sensing, Cellular Communications, High-Speed Vehicles, and Smart Grid (Paperback)
Tao Jiang, Zhiqiang Wang, Yang Cao
R1,370 Discovery Miles 13 700 Ships in 10 - 15 working days

Resource allocation is an important issue in wireless communication networks. In recent decades, cognitive radio-based networks have garnered increased attention and have been well studied to overcome the problem of spectrum scarcity in future wireless communications systems. Many new challenges in resource allocation appear in cognitive radio-based networks. This book focuses on effective resource allocation solutions in several important cognitive radio-based networks, including opportunistic spectrum access networks, cooperative sensing networks, cellular networks, high-speed vehicle networks, and smart grids. Cognitive radio networks are composed of cognitive, spectrum-agile devices capable of changing their configuration on the fly based on the spectral environment. This capability makes it possible to design flexible and dynamic spectrum access strategies with the purpose of opportunistically reusing portions of the spectrum temporarily vacated by licensed primary users. Different cognitive radio-based networks focus on different network resources, such as transmission slots, sensing nodes, transmission power, white space, and sensing channels. This book introduces several innovative resource allocation schemes for different cognitive radio-based networks according to their network characteristics: Opportunistic spectrum access networks - Introduces a probabilistic slot allocation scheme to effectively allocate the transmission slots to secondary users to maximize throughput Cooperative sensing networks - Introduces a new adaptive collaboration sensing scheme in which the resources of secondary users are effectively utilized to sense the channels for efficient acquisition of spectrum opportunities Cellular networks - Introduces a framework of cognitive radio-assisted cooperation for downlink transmissions to allocate transmission modes, relay stations, and transmission power/sub-channels to secondary users to maximize throughput High-speed vehicle networks - Introduces schemes to maximize the utilized TV white space through effective allocation of white space resources to secondary users Smart grids - Introduces effective sensing channel allocation strategies for acquiring enough available spectrum channels for communications between utility and electricity consumers

Smart Materials Taxonomy (Paperback): Victor Goldade, Serge Shil'ko, Aleksander Neverov Smart Materials Taxonomy (Paperback)
Victor Goldade, Serge Shil'ko, Aleksander Neverov
R1,473 Discovery Miles 14 730 Ships in 10 - 15 working days

Smart materials have been categorized employing taxonomical methods used in classification of cybernetics systems. This approach has allowed the systematization of the variety of smart materials (both developed and conceptualized) as well to substantiate the three-stage process of the materials' making. This book proposes a phenomenological model describing smart materials.

Understanding Electromagnetic Waves (Hardcover, 1st ed. 2020): Ming-Seng Kao, Chieh-Fu Chang Understanding Electromagnetic Waves (Hardcover, 1st ed. 2020)
Ming-Seng Kao, Chieh-Fu Chang
R2,724 Discovery Miles 27 240 Ships in 10 - 15 working days

This one-semester textbook teaches students Electromagnetic Waves, via an early introduction to Maxwell's Equations in the first chapter. Mathematics fundamentals are used as needed, but rigor is de-emphasized in preference to understanding the basic ideas and principles of EM waves. Each chapter includes extensive, step-by-step, solved examples, as well as abundant exercises. Designed for a one-semester course in electromagnetic waves; Introduces Maxwell's equations in the first chapter; De-emphasizes mathematical rigor in order to make key ideas and principles easy to understand; Makes material accessible to readers of varying backgrounds, with extensive use of solved examples; Includes abundant exercises for each chapter.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Microwave Wireless Communications - From…
Antonio Raffo, Giovanni Crupi Hardcover R2,693 Discovery Miles 26 930
Microwave Active Circuit Analysis and…
Clive Poole, Izzat Darwazeh Hardcover R1,978 R1,713 Discovery Miles 17 130
Proceedings of 2018 International…
Ying-quan Peng, Xinyong Dong Hardcover R4,046 Discovery Miles 40 460
Metamaterial Surface Plasmon-Based…
Amin Kianinejad Hardcover R2,653 Discovery Miles 26 530
Flash Lamp Annealing - From Basics to…
Lars Rebohle, Slawomir Prucnal, … Hardcover R3,364 Discovery Miles 33 640
Advances in Planar Filters Design
Jia-Sheng Hong Hardcover R3,536 R3,188 Discovery Miles 31 880
Handbook of Research on Emerging Designs…
Jamal Zbitou, Mostafa Hefnawi, … Hardcover R8,027 Discovery Miles 80 270
Principles and Applications of…
Changzhi Li, Mohammad Tofighi, … Hardcover R2,956 R2,776 Discovery Miles 27 760
RF / Microwave Circuit Design for…
Ulrich L. Rohde, Matthias Rudolph Hardcover R4,952 Discovery Miles 49 520
100 RF and Microwave Circuit Design…
Ali A Behagi Hardcover R1,343 R1,121 Discovery Miles 11 210

 

Partners