![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Microwave technology
This book outlines, with the help of several specific examples, the important role played by absorption spectroscopy in the investigation of deep-level centers introduced in semiconductors and insulators like diamond, silicon, germanium and gallium arsenide by high-energy irradiation, residual impurities, and defects produced during crystal growth. It also describes the crucial role played by vibrational spectroscopy to determine the atomic structure and symmetry of complexes associated with light impurities like hydrogen, carbon, nitrogen and oxygen, and as a tool for quantitative analysis of these elements in the materials.
This book describes optical receiver solutions integrated in standard CMOS technology, attaining high-speed short-range transmission within cost-effective constraints. These techniques support short reach applications, such as local area networks, fiber-to-the-home and multimedia systems in cars and homes. The authors show how to implement the optical front-end in the same technology as the subsequent digital circuitry, leading to integration of the entire receiver system in the same chip. The presentation focuses on CMOS receiver design targeting gigabit transmission along a low-cost, standardized plastic optical fiber up to 50m in length. This book includes a detailed study of CMOS optical receiver design - from building blocks to the system level.
RF and Microwave Microelectronics Packaging presents the latest developments in packaging for high-frequency electronics. It will appeal to practicing engineers in the electronic packaging and high-frequency electronics fields and to academic researchers interested in understanding leading issues in the commercial sector. It covers the latest developments in thermal management, electrical/RF/thermal-mechanical designs and simulations, packaging and processing methods as well as other RF/MW packaging-related fields.
The book is devoted to exploring the foundations of the theory of thin impedance vibrator antennas. The text provides a continuation of the classic theory of thin perfectly conducting vibrators. Many consider impedance conception one of the most universal models in the theory of wave processes, as it informs such a wide spectrum of uses in solving practical problems of electrodynamics. This topic provides an opportunity to further search analytical solutions, allowing a simplification of the mathematical formulation of the boundary problem. The theory strives to widen the boundaries of the impedance vibrator antennas application in complex modern radio-and-electronic systems and devices. The results of much original research conducted by the authors will be useful for practicing engineers and designers of antenna and waveguide systems. The book is written in an academic style, and can be used to teach students and post graduates about radiotechnical and radiophysical specialities. The conclusion of the book lists many actual applied problems, which can provide inspiration for several potential PhD projects. Topics covered in this book are: *general questions of the theory of impedance vibrators in the spatial-frequency representation *electromagnetic waves radiation by impedance vibrators in free space and material mediums *electromagnetic waves radiation by impedance vibrators in material mediums over the perfectly conducting plane *electromagnetic waves scattering by irregular impedance vibrators in free space *generalized method of induced electromotive forces for investigation of the characteristics of impedance vibrators *radiation of electromagnetic waves by radial impedance vibrators on the perfectly conducting sphere *electromagnetic waves scattering by impedance vibrators in the rectangular waveguide
Cooperation in Wireless Networks: Principles and Applications covers the underlying principles of cooperative techniques as well as several applications demonstrating the use of such techniques in practical systems. The book is written in a collaborative manner by several authors from Asia, America, and Europe. This book puts into one volume a comprehensive and technically rich appraisal of the wireless communications scene from a cooperation point of view.
Quantum Aspects of Light Propagation provides an overview of spatio-temporal descriptions of the electromagnetic field in linear and nonlinear dielectric media, appropriate to macroscopic and microscopic theories. Readers will find an introduction to canonical quantum descriptions of light propagation in a nonlinear dispersionless dielectric medium, and an approach to linear and nonlinear dispersive dielectric media. Illustrated by optical processes, these descriptions are simplified by a transition to one-dimensional propagation. Quantum theories of light propagation in optical media are generalized from dielectric media to magnetodielectrics, in addition to a presentation of classical and nonclassical properties of radiation propagating through negative-index media. Valuable analyses of quantization in waveguides, photonic crystals, and propagation in strongly scattering media are also included, along with various optical resonator properties. The theories are utilized for the quantum electrodynamical effects to be determined in periodic dielectric structures which are known to be a basis of new schemes for lasing and a control of light field state. Quantum Aspects of Light Propagation is a valuable reference for researchers and engineers involved with general optics, quantum optics and electronics, nonlinear optics, and photonics.
Terahertz (THz) radiation, which is electromagnetic radiation in a frequency int- val from 0.3 to 10 THz (1 mm-30 ?m wavelength), is the next frontier in science and technology. This band occupies a large portion of the electromagnetic sp- trum between the infrared and microwave bands. Basic research, new initiatives, and developments in advanced sensing and imaging technology with regard to the THz band remain unexplored compared to the relatively well-developed science and technology in the microwave and optical frequencies. Historically, THz technologies were used mainly within the astronomy c- munity for studying the background of cosmic far-infrared radiation, and by the laser-fusion community for the diagnostics of plasmas. Since the ?rst demonstration of THz wave time-domain spectroscopy in the late 1980s, there has been a series of signi?cant advances (particularly in recent years) as more intense THz sources and higher sensitivity detectors provide new opportunities for understanding the basic science in the THz frequency range.
This first book on load-pull systems is intended for readers with a broad knowledge of high frequency transistor device characterization, nonlinear and linear microwave measurements, RF power amplifiers and transmitters. Load-Pull Techniques with Applications to Power Amplifier Design fulfills the demands of users, designers, and researchers both from industry and academia who have felt the need of a book on this topic. It presents a comprehensive reference spanning different load-pull measurement systems, waveform measurement and engineering systems, and associated calibration procedures for accurate large signal characterization. Besides, this book also provides in-depth practical considerations required in the realization and usage of load-pull and waveform engineering systems. In addition, it also provides procedure to design application specific load-pull setup and includes several case studies where the user can customize architecture of load-pull setups to meet any specific measurement requirements. Furthermore, the materials covered in this book can be part of a full semester graduate course on microwave device characterization and power amplifier design.
Nonlinear Photonics and Novel Optical Phenomena contains contributed chapters from leading experts in nonlinear optics and photonics, and provides a comprehensive survey of fundamental concepts as well as hot topics in current research on nonlinear optical waves and related novel phenomena. The book covers self-accelerating airy beams, integrated photonics based on high index doped-silica glass, linear and nonlinear spatial beam dynamics in photonic lattices and waveguide arrays, the theory of polariton solitons in semiconductor microcavities, and Terahertz waves.
The field of organic and printed electronics is well established in terms of academic, scientific, and technological research but is still an emerging one in terms of mass industrial applications such as OLED displays and lighting and organic photovoltaics. This book provides a comprehensive introduction to organic and printed electronics, their fundamental aspects, core technologies, and applications, and it is the first book of its kind specifically designed to address students in their final undergraduate or beginning graduate studies, as well as engineers interested in approaching this field.
The "EPCglobal Architecture Framework" is currently the most
accepted technical approach to the Internet of Things and provides
a solid foundation for building Business-to-Business information
networks based on unique identifications of 'things'. Lately, the
vision of the Internet of Things has been extended to a more
holistic approach that integrates sensors as well as actuators and
includes non-business stakeholders. A detailed look at the current
state of the art in
This book offers the reader a practical guide to the control and characterization of laser diode beams. Laser diodes are the most widely used lasers, accounting for 50% of the global laser market. Correct handling of laser diode beams is the key to the successful use of laser diodes, and this requires an in-depth understanding of their unique properties. Following a short introduction to the working principles of laser diodes, the book describes the basics of laser diode beams and beam propagation, including Zemax modeling of a Gaussian beam propagating through a lens. The core of the book is concerned with laser diode beam manipulations: collimating and focusing, circularization and astigmatism correction, coupling into a single mode optical fiber, diffractive optics and beam shaping, and manipulation of multi transverse mode beams. The final chapter of the book covers beam characterization methods, describing the measurement of spatial and spectral properties, including wavelength and linewidth measurement techniques. The book is a significantly revised and expanded version of the title Laser Diode Beam Basics, Manipulations and Characterizations by the same author. New topics introduced in this volume include: laser diode types and working principles, non-paraxial Gaussian beam, Zemax modeling, numerical analysis of a laser diode beam, spectral property characterization methods, and power and energy characterization techniques. The book approaches the subject in a practical way with mathematical content kept to the minimum level required, making the book a convenient reference for laser diode users.
This book describes methods to design distributed amplifiers useful for performing circuit functions such as duplexing, paraphrase amplification, phase shifting power splitting and power combiner applications. A CMOS bidirectional distributed amplifier is presented that combines for the first time device-level with circuit-level linearization, suppressing the third-order intermodulation distortion. It is implemented in 0.13um RF CMOS technology for use in highly-linear, low-cost UWB Radio-over-Fiber communication systems.
This book presents new concepts for a next generation of PV. Among these concepts are: Multijunction solar cells, multiple excitation solar cells (or how to take benefit of high energy photons for the creation of more than one electron hole-pair), intermediate band solar cells (or how to take advantage of below band-gap energy photons) and related technologies (for quantum dots, nitrides, thin films), advanced light management approaches (plasmonics). Written by world-class experts in next generation photovoltaics this book is an essential reference guide accessible to both beginners and experts working with solar cell technology. The book deeply analyzes the current state-of-the-art of the new photovoltaic approaches and outlines the implementation paths of these advanced devices. Topics addressed range from the fundamentals to the description of state-of-the-art of the new types of solar cells.
This volume contains revised and extended research articles written by prominent researchers participating in the ICF4C 2011 conference. 2011 International Conference on Future Communication, Computing, Control and Management (ICF4C 2011) has been held on December 16-17, 2011, Phuket, Thailand. Topics covered include intelligent computing, network management, wireless networks, telecommunication, power engineering, control engineering, Signal and Image Processing, Machine Learning, Control Systems and Applications, The book will offer the states of arts of tremendous advances in Computing, Communication, Control, and Management and also serve as an excellent reference work for researchers and graduate students working on Computing, Communication, Control, and Management Research.
This volume contains revised and extended research articles written by prominent researchers participating in the ICF4C 2011 conference. 2011 International Conference on Future Communication, Computing, Control and Management (ICF4C 2011) has been held on December 16-17, 2011, Phuket, Thailand. Topics covered include intelligent computing, network management, wireless networks, telecommunication, power engineering, control engineering, Signal and Image Processing, Machine Learning, Control Systems and Applications, The book will offer the states of arts of tremendous advances in Computing, Communication, Control, and Management and also serve as an excellent reference work for researchers and graduate students working on Computing, Communication, Control, and Management Research.
Nanophotonics, a novel optical technology, utilizes the local interaction between nanometric particles via optical near fields. The optical near fields are the elementary surface excitations on nanometric particles, i.e. dressed photons that carry material energy. Of the variety of qualitative innovations in optical technology realized by nanophotonics, this books focuses on fabrication. To fabricate nano-scale photonic devices with nanometer-scale controllability in size and position, we developed a self-assembly method for size- and position-controlled ultra-long nanodot chains using a novel effect of near-field optical desorption. A novel deposition and etching scheme under nonresonant conditions is also demonstrated and its origin is reviewed.
Transformation electromagnetics is a systematic design technique for optical and electromagnetic devices that enables novel wave-material interaction properties. The associated metamaterials technology for designing and realizing optical and electromagnetic devices can control the behavior of light and electromagnetic waves in ways that have not been conventionally possible. The technique is credited with numerous novel device designs, most notably the invisibility cloaks, perfect lenses and a host of other remarkable devices. Transformation Electromagnetics and Metamaterials: Fundamental Principles and Applications presents a comprehensive treatment of the rapidly growing area of transformation electromagnetics and related metamaterial technology with contributions on the subject provided by a collection of leading experts from around the world. On the theoretical side, the following questions will be addressed: "Where does transformation electromagnetics come from?," "What are the general material properties for different classes of coordinate transformations?," "What are the limitations and challenges of device realizations?," and "What theoretical tools are available to make the coordinate transformation-based designs more amenable to fabrication using currently available techniques?" The comprehensive theoretical treatment will be complemented by device designs and/or realizations in various frequency regimes and applications including acoustic, radio frequency, terahertz, infrared, and the visible spectrum. The applications encompass invisibility cloaks, gradient-index lenses in the microwave and optical regimes, negative-index superlenses for sub-wavelength resolution focusing, flat lenses that produce highly collimated beams from an embedded antenna or optical source, beam concentrators, polarization rotators and splitters, perfect electromagnetic absorbers, and many others. This book will serve as the authoritative reference for students and researchers alike to the fast-evolving and exciting research area of transformation electromagnetics/optics, its application to the design of revolutionary new devices, and their associated metamaterial realizations.
This practical resource offers a thorough examination of RF transceiver design for MIMO communications. Offering a practical view on MIMO wireless systems, this book extends fundamental concepts on classic wireless transceiver design techniques to MIMO transceivers. This helps reader gain a very comprehensive understanding of the subject. This in-depth volume describes many theoretical and implementation challenges on MIMO transceivers and provides the practical solutions for these issues. This comprehensive book provides thorough descriptions of MIMO theoretical concepts, MIMO single carrier and OFDM modulation, RF transceiver design concepts, power amplifier, MIMO transmitter design techniques and their RF impairments, MIMO receiver design methods, RF impairments study including nonlinearity, DC-offset, I/Q imbalance and phase noise and their compensation in OFDM and MIMO techniques. In addition, it provides the most practical techniques to realize RF front-ends in MIMO systems. This book is supported with many design equations and illustrations. The first book dedicated to RF Transceiver design for MIMO systems, this volume serves as a current, one-stop guide offering you cost-effective solutions for your challenging projects in the field.
This thesis presents a groundbraking methodology for the radar international community. The detection approach introduced, namely perturbation analysis, is completey novel showing a remarkable capability of thinking outside the box. Perturbation analysis is able to push forward the performance limits of current algorithms, allowing the detection of targets smaller than the resolution cell and highly embedded in clutter. The methodology itself is extraordinary flexibe and has already been used in two other large projects, funded by the ESA (European Space Agency): M-POL for maritime surveillance, and DRAGON-2 for land classification with particular attention to forests. This book is a perfectly organised piece of work where every detail and perspective is taken into account in order to provide a comprehensive vision of the problems and solutions.
The growing commercial market of Microwave/ Millimeter wave industry over the past decade has led to the explosion of interests and opportunities for the design and development of microwave components.The design of most microwave components requires the use of commercially available electromagnetic (EM) simulation tools for their analysis. In the design process, the simulations are carried out by varying the design parameters until the desired response is obtained. The optimization of design parameters by manual searching is a cumbersome and time consuming process. Soft computing methods such as Genetic Algorithm (GA), Artificial Neural Network (ANN) and Fuzzy Logic (FL) have been widely used by EM researchers for microwave design since last decade. The aim of these methods is to tolerate imprecision, uncertainty, and approximation to achieve robust and low cost solution in a small time frame. Modeling and optimization are essential parts and powerful tools for the microwave/millimeter wave design. This book deals with the development and use of soft computing methods for tackling challenging design problems in the microwave/millimeter wave domain. The aim in the development of these methods is to obtain the design in small time frame while improving the accuracy of the design for a wide range of applications. To achieve this goal, a few diverse design problems of microwave field, representing varied challenges in the design, such as different microstrip antennas, microwave filters, a microstrip-via and also some critical high power components such as nonlinear tapers and RF-windows are considered as case-study design problems. Different design methodologies are developed for these applications. The presents soft computing methods, their review for microwave/millimeter wave design problems and specific case-study problems to infuse better insight and understanding of the subject.
The Microwave Engineering Handbook provides the only complete reference available on microwave engineering. The three volumes of the handbook cover the entire field of microwave engineering, from basic components to system design. All entries in the handbook are written by experts in the area, bringing together an unrivalled collection of expertise on microwave technology.
This book discusses the practical aspects of electrical and thermal modeling of packages. In addition, processing concerns for plastic packaged GaAs parts are also covered. The book emphasizes low cost industry standard packages. However, the principles involved translate well to other categories of packages. Digital issues such as crosstalk are well documented in other books and are therefore not covered in detail in this text. The principles for generation of equivalent circuit package models applies to both digital and analog parts. Digital designers and packaging engineers should still find this text useful. Subtleties often overlooked by standard methods of modeling packages for digital applications are considered and will become more important to the digital packaging engineer as frequencies continue to increase. It is hoped this book will be useful to both microwave and digital integrated circuit (Ie) designers as well as packaging engineers. In the past these disciplines were distinct. Packaging engineers typically were concerned with only materials and mechanical issues of the package. As long as there was an electrical connection made from the die to the external pin, packaging engineers had the freedom to do anything they wanted between these two points. At high frequency the issues change. Packaging engineers now have to work with die level designers to either create a package that performs well at high frequencies or to use readily available low cost packages that happen to meet the needs of the application.
Basics of Distributed and Cooperative Radio and Non-Radio Based Geolocation provides a detailed overview of geolocation technologies. The book covers the basic principles of geolocation, including ranging techniques to localization technologies, fingerprinting and localization in wireless sensor networks. This book also examines the latest algorithms and techniques such as Kalman Filtering, Gauss-Newton Filtering and Particle Filtering.
As the theoretical foundations of multiple-antenna techniques evolve and as these multiple-input multiple-output (MIMO) techniques become essential for providing high data rates in wireless systems, there is a growing need to understand the performance limits of MIMO in practical networks. To address this need, "MIMO Communication for Cellular Networks "presents a systematic description of MIMO technology classes and a framework for MIMO system design that takes into account the essential physical-layer features of practical cellular networks. In contrast to works that focus on the theoretical performance of abstract MIMO channels, "MIMO Communication for Cellular Networks "emphasizes the practical performance of realistic MIMO systems. A unified set of system simulation results highlights relative performance gains of different MIMO techniques and provides insights into how best to use multiple antennas in cellular networks under various conditions. "MIMO Communication for Cellular Networks" describes single-user, multiuser, network MIMO technologies and system-level aspects of cellular networks, including channel modeling, resource scheduling, interference mitigation, and simulation methodologies. The key concepts are presented with sufficient generality to be applied to a wide range of wireless systems, including those based on cellular standards such as LTE, LTE-Advanced, WiMAX, and WiMAX2. The book is intended for use by graduate students, researchers, and practicing engineers interested in the physical-layer design of state-of-the-art wireless systems. |
You may like...
Gender Gaps and the Social Inclusion…
Idongesit Williams, Olga Millward, …
Hardcover
R4,855
Discovery Miles 48 550
The Handbook of Multimodal-Multisensor…
Sharon Oviatt, Bjoern Schuller, …
Hardcover
Fundamentals of Spatial Information…
Robert Laurini, Derek Thompson
Hardcover
R1,451
Discovery Miles 14 510
Discovering Computers, Essentials…
Susan Sebok, Jennifer Campbell, …
Paperback
Handbook of Research on Cloud and Fog…
Pethuru Raj, Anupama Raman
Hardcover
R6,116
Discovery Miles 61 160
Computer-Graphic Facial Reconstruction
John G. Clement, Murray K. Marks
Hardcover
R2,327
Discovery Miles 23 270
|